簡易檢索 / 詳目顯示

研究生: 詹昇融
Jan, Shen-Ron
論文名稱: 整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析
Power Flow Control and Stability Analysis of an Integrated Offshore Wind Farm and Seashore Wave Energy Farm
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 184
中文關鍵詞: 離岸式風場沿岸波浪場變頻變壓器飛輪儲能系統高壓直流傳輸系統功率潮流穩定度
外文關鍵詞: Offshore wind farm, seashore wave energy farm, variable frequency transformer (VFT), flywheel energy-storage system (FESS), high-voltage direct current (HVDC) link, power flow, stability
相關次數: 點閱:120下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以整合離岸式風場與沿岸波浪場並聯市電為研究系統,分別採用變頻變壓器、飛輪儲能系統以及高壓直流傳輸系統等三種控制架構,分別完成穩態及動態結果。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立離岸式風場、沿岸波浪場、變頻變壓器、飛輪儲能系統以及高壓直流傳輸系統等模型,並利用極點安置法設計變頻變壓器、飛輪儲能系統以及高壓直流傳輸系統等三種控制架構之比例-積分-微分阻尼控制器。本論文於穩態特性方面,分析不同風速、氣流速及電網電壓等情況下對系統特性之影響,在動態模擬方面,完成了風速變動、轉矩干擾以及市電端三相短路故障等模擬結果。由模擬結果分析得知,三種控制架構對整合離岸式風場與沿岸波浪場並聯市電的功率潮流及穩定度控制方面具有不同的影響。

    This thesis employs an integrated offshore wind farm and seashore wave energy farm connected to utility grid as the studied system while a variable frequency transformer (VFT), a flywheel energy-storage system (FESS), and a high-voltage direct current (HVDC) link are utilized as the control devices for the studied system, respectively. The q-d axis equivalent-circuit model is developed to establish the models for the offshore wind farm, the seashore wave energy farm, the VFT, the FESS, and the HVDC link under three-phase balanced loading conditions. A proportional-integral-derivative (PID) type damping controller for the VFT, the FESS, and the HVDC link is designed using pole-assignment approach based on modal control theory, respectively. Steady-state characteristics of this studied system under different values of wind speed, axial velocity of air, and grid voltage are examined. Dynamic simulations of the studied system subject to various values of wind speed, torque disturbance, etc. as well as a three-phase fault are also carried out. It can be concluded from the simulation results that the proposed three control devices have different effects on the power flow and stability of the studied system.

    摘 要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 X 符號說明 XIV 第一章 緒論 1 1-1 研究背景 1 1-2研究動機 2 1-3 相關文獻回顧 3 1-4本論文貢獻 10 1-5研究內容概述 10 第二章 系統與數學模型 13 2-1 前言 13 2-2 風速之數學模型 14 2-3 聚集等效風渦輪機之模型 18 2-4 風場雙饋式感應發電機之數學模型 21 2-5 旋角控制器之模型 23 2-6 雙饋式感應發電機之模型 24 2-7 威爾斯渦輪機之數學模型 27 2-8 變頻變壓器之數學模型 30 2-9 直流驅動馬達之模型 31 2-10 驅動馬達控制器之模型 33 2-11 飛輪儲能系統之數學模型 34 2-12 飛輪儲能系統之控制器模型 35 2-13 高壓直流傳輸系統之數學模型 38 2-14 高壓直流傳輸系統之控制器模型 39 第三章 利用極點安置法設計控制器 42 3-1 前言 42 3-2 離岸式風場與沿岸波浪場加入變頻變壓器並聯市電之控制器設計 43 3-3 離岸式風場與沿岸波浪場加入飛輪儲能系統並聯市電之控制器設計 52 3-4 離岸式風場與沿岸波浪場加入高壓直流傳輸系統並聯市電之器設計 58 第四章 系統之穩態分析 65 4-1 前言 65 4-2 風速與波浪發電系統之氣流速改變時風場與波浪場結合變頻變壓器之系統穩態分析 66 4-3 風速與波浪發電系統之氣流速改變時風場與波浪場結合飛輪儲能系統之系統穩態分析 75 4-4 風速與波浪發電系統之氣流速改變時風場與波浪場結合高壓直流傳輸系統之系統穩態分析 84 4-5 市電端電壓改變時風場與波浪場結合變頻變壓器之系統穩態分析 93 4-6 市電端電壓改變時風場與波浪場結合飛輪儲能系統之系統穩態分析 100 4-7 市電端電壓改變時風場與波浪場結合高壓直流傳輸系統之系統穩態分析 106 第五章 整合離岸式風場與沿岸波浪場之動態與暫態分析 112 5-1 前言 112 5-2 整合離岸式風場與沿岸波浪場加入變頻變壓器之動態及暫態分析 112 5-2-1 風速變動時之動態分析 112 5-2-2 風機發生轉矩干擾時之動態分析 117 5-2-3 市電端發生三相短路故障時之暫態分析 121 5-2-4 低電壓持續運轉能力之動態分析 125 5-3 整合離岸式風場與沿岸波浪場加入飛輪儲能系統之動態及暫態分析 130 5-3-1 風速變動時之動態分析 130 5-3-2 風機發生轉矩干擾時之動態分析 136 5-3-3 市電端發生三相短路故障時之暫態分析 141 5-3-4 低電壓持續運轉能力之動態分析 146 5-4 整合離岸式風場與沿岸波浪場加入高壓直流傳輸系統之動態及暫態分析 150 5-4-1 風速變動時之動態分析 150 5-4-2 風機發生轉矩干擾時之動態分析 156 5-4-3 市電端發生三相短路故障時之暫態分析 161 5-4-4 低電壓持續運轉能力之動態分析 166 第六章 結論與未來研究方向 171 6-1 結論 171 6-2 未來研究方向 175 參考文獻 176 附錄 系統參數 181 作者簡介 183

    [1]經濟部能源局,http://www.moeaboe.gov.tw/,2010年6月10日。
    [2]鄭雅堂,物理雙月刊廿九卷三期,2010年6月10日,http://psroc.phys.ntu.edu.tw/bimonth/download.php? d=1&cpid=157&did=6。
    [3]李賢華,近岸海域資源開發,臺灣近岸產業發展研討會,2004 年 10月,http://www.iut.nsysu.edu.tw/UTS/TNCPD/3-TNCPD.pdf。
    [4]F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, “Control of DFIG-based wind generation for power network support,” IEEE Trans. Power Systems, vol. 20, no. 4, pp. 1958-1966, November 2005.
    [5]F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751- 760, September 2007.
    [6]M. Kayıkçı and J. V. Milanović, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, June 2007.
    [7]S. S. Y. Narayanan, B. K. Murthy, and G. S. Rao, “Dynamic analysis of a grid-connected induction generator driven by a wave-energy turbine through hunting networks,” IEEE Trans. Energy Conversion, vol. 14, no. 1, pp. 115-120, March 1999.
    [8]S. S. Rao and B. K. Murthy, “Control of induction generator in a Wells turbine based wave energy system,” in Proc. International Conference on Power Electronics, Drives Systems, vol. 2, pp. 1590-1594, November 2005.
    [9]B. K. Murthy and S. S. Rao, “Rotor side control of Wells turbine driven variable speed constant frequency induction generator,” Electric Power Components and Systems Journal, vol. 33, no. 6, pp. 587-596, July 2005.
    [10]L. Wang and Z. J. Chen, “Stability analysis of a wave- energy conversion system containing a grid-connected induction generator driven by a Wells turbine,” IEEE Trans. Energy Conversion, vol. 25, no. 2, pp. 555-563, June 2010.
    [11]A. Merkhouf, S. Uphadayay, and P. Doyon, “Variable frequency transformer electromagnetic design concept,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [12]P. Truman and N. Stranges, “A direct current torque motor for application on a variable frequency transformer,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [13]P. E. Marken, J. J. Marczewski, R. D'Aquila, P. Hassink, J. H. Roedel, and R. L. Bodo, “VFT - A smart transmission technology that is compatible with the existing and future grid,” in Proc. 2009 IEEE Power Systems Conference and Exposition, March 15-18, 2009, Seattle, Washington, USA.
    [14]G. Li, S. Cheng, J. Wen, Y. Pan, and J. Ma, “Power system stability enhancement by a double-fed induction machine with a flywheel energy storage system,” in Proc. IEEE Power Engineering Society General Meeting, vol. 18, no. 22, pp. 1-7, June 2006.
    [15]R. de Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. da Silva Neto, R. M. Stephan, W. I. Suemitsu, and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Applied Superconductivity, vol. 17, no. 2, pp. 2154-2157, June 2007.
    [16]R. F. Thelen, A. Gattozzi, D. Wardell, and A. Williams, “A 2-MW motor and ARCP drive for high-speed flywheel,” in Proc. IEEE Applied Power Electronics Conference, pp. 1690-1694, February /March 2007.
    [17]G. Cimuca, S. Breban, M. M. Radulescu, C. Saudemont, and B. Robyns, “Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator,” IEEE Trans. Energy Conversion, vol. 25, no. 2, pp. 526-534, June 2010.
    [18]L. Xu, L. Yao, and C. Sasse, “Grid integration of large DFIG-based wind farms using VSC transmission,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 976-984, August 2007.
    [19]C. Feltes, H. Wrede, F. W. Koch, and I. Erlich, “Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission,” IEEE Trans. Power Systems, vol. 24, no. 3, pp. 1537-1546, August 2009.
    [20]N. Prabhua and K. P. Padiyar, “Investigation of subsynchronous resonance with VSC-based HVDC transmission systems,” IEEE Trans. Power Delivery, vol. 24, no. 1, pp. 433-440, January 2009.
    [21]S. M. Muyeen, R. Takahashi, and J. Tamura, “Operation and control of HVDC-connected offshore wind farm,” IEEE Trans. Sustainable Energy, vol. 1, no. 1, pp. 30-37, April 2010.
    [22]L. Wang, S. S. Chen, W. J. Lee, and Z. Chen, “Dynamic stability enhancement and power flow control of a hybrid wind and marine-current farm using SMES,” IEEE Trans. Energy Conversion, vol. 24, no. 3, pp. 626-639, September 2009.
    [23]劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,2005年6月。
    [24]盧志榮,飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究,國立成功大學電機工程學系碩士論文,2008年6月。
    [25]P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [26]林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,2006年6月。
    [27]陳龍憶,變頻變壓器連接於電力系統之功率潮流控制與穩定度分析,國立成功大學電機工程學系碩士論文,2009年7月。
    [28]余俊穎,飛輪儲能系統於混合大型離岸式風場與海流場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,2009年7月。
    [29]盧志榮,飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究,國立成功大學電機工程學系碩士論文,2008年6月。
    [30]陳翔雄,利用超導儲能系統於大型離岸式風場之動態穩定度改善研究,國立成功大學電機工程學系博士論文,2009年3月。
    [31]C. Abbey and G. Joos, “Effect of low voltage ride through (LVRT) characteristic on voltage stability,” in Proc. 2005 IEEE Power Engineering Society General Meeting, June 12-14, 2005, San Francisco, California, USA.
    [32]Introduction to Renewable Energy. http://www.renewableenergyworld.com, retrieve date: July 6, 2010.
    [33]台灣電力公司,http://www.taipower.com.tw/,2010年7月30日。

    下載圖示 校內:2020-01-01公開
    校外:2011-08-27公開
    QR CODE