簡易檢索 / 詳目顯示

研究生: 陳建中
Chen, Jian-Zhong
論文名稱: 多孔性及石膠泥瀝青混凝土鋪面評估
Pavement Performance of Porous Asphalt Concrete and Stone Mastic Asphalt
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 164
中文關鍵詞: 多孔性瀝青混凝土(PAC)石膠泥瀝青混凝土(SMA)車轍量透水性鋪面績效
外文關鍵詞: Porous Asphalt Concrete (PAC), Stone Mud Asphalt Concrete (SMA), Rutting, Water Permeability, Pavement Utility
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 柔性鋪面依使用混合料級配和成分不同,包含較佳排水性及抗滑能力,並可減低行車噪音之多孔性瀝青混凝土(Porous Asphalt Concrete, PAC)及適合應用於重載交通路段和易產生高剪力的轉彎處之石膠泥瀝青混凝土(Stone Mastic Asphalt, SMA)。台灣地處於高溫、潮濕且多雨的亞熱帶氣候地區,夏季氣候高溫炙熱,且汛期長達7個月之久,常挾帶豐沛雨量。國內道路主管機關為提昇道路使用安全並改善鋪面永久變形、車轍、龜裂與剝脫等破壞現象,嘗試選用PAC及SMA取代密級配瀝青混凝土(DGAC)。本研究藉由現地檢測之車轍量、噪音值、CIV、透水量,鑽心試驗之力學性質,以及主辦機關提供平坦度、抗滑值及事故當量(EPDO)數據評估國道3號南投段與大甲段之PAC及SMA鋪面功能性、耐久性及安全性等績效。依據試驗結果和討論,PAC路段顯示抗車輛荷重能力佳、降低交通噪音、提升抗滑性、及維持長期透水性;另外,鋪築後之EPDO於南投段有遞減的趨勢,而於大甲段則無變化,長期績效仍需持續觀察;SMA路段之抗車轍變形能力佳及鋪築前後之CIV值皆高於70,顯現整體鋪面結構穩定。

    Flexible pavement has better drainage and anti skid, which depends on the gradation and difference of the mixture used. The Porous Asphalt Concrete (PAC) also reduces he noise of driving and Stone Mastic Asphalt (SMA) applied to the section which has heavy-duty traffic and high shear corner. Taiwan is located in subtropical zones which the climate is high temperature, humidity and rainy. It has extremely high temperature during the summer and the flood season is continued for seven months. The competent authority used PAC and SMA to replace Dense-Graded Asphalt Concrete (DGAC) in order to improve the safety and decrease the damages of the road, for instance, distortion, rut, crack and exfoliation of the pavement. In this study used the rut, noise, CIV, MR and the IDT from the core test of mechanics also the data from the competent authority which provided the flatness, skid resistance and the EPDO to evaluate the safety, durability, functionality of the pavement on the national highway(No.3) between the Nantou section and Dajia section. According to the experiments and the discussion, the PAC section shows that it the loading capacity of vehicle is much better. It decreases the noise of traffic also improve the skid resistance and remain the water permeability. Additionally, the Nantou section which paving the PAC has decreased the EPDO but it doesn’t have the significant changes on the Dajia section. Therefore, it needs to observe consistently for its long-term utility. The SMA pavement has much better anti-rutting deformation performance and the CIV is higher than 70 after paving, it shows that the stable structure of the pavement.

    摘要I ABSTRACTII 致謝VII 目錄VIII 圖目錄XIII 表目錄XVII 1 第一章 緒論1-1 1.1 前言1-1 1.2 研究動機1-2 1.3 研究目的1-3 1.4 研究範圍1-3 2 第二章 文獻回顧2-1 2.1 石膠泥瀝青混凝土(SMA)2-1 2.1.1 粒料2-3 2.1.2 瀝青膠漿2-4 2.2 多孔性瀝青混凝土(PAC)2-5 2.2.1 粒料2-6 2.2.2 透水性2-7 2.2.3 減噪效果2-8 2.3 平坦度2-12 2.3.1 國際粗糙度指數(International Roughness Index, IRI)2-13 3 第三章 研究方法3-1 3.1 研究流程3-1 3.2 檢測路段3-3 3.2.1 國道3號南投段PAC路段3-7 3.2.2 國道3號大甲段南向PAC路段3-14 3.2.3 國道3號南投段南向SMA路段3-14 3.2.4 國道6號南投段PAC路段3-20 3.3 現地檢測3-23 3.3.1 車轍量試驗3-23 3.3.2 噪音值試驗3-24 3.3.3 Clegg衝擊試驗3-25 3.3.4 透水性試驗3-26 3.4 現地鑽心試驗3-28 3.4.1 試體回彈模數3-28 3.4.2 間接張力強度試驗3-29 3.5 機關資料數據3-30 3.5.1 平坦度3-30 3.5.2 抗滑值3-31 3.5.3 事故當量(EPDO)3-32 4 第四章 結果與討論4-1 4.1 國道3號南投段PAC路段4-1 4.1.1 背景說明4-1 4.1.2 配合設計4-2 4.1.3 鋪面狀況4-9 4.1.4 車轍量試驗4-21 4.1.5 噪音值試驗4-24 4.1.6 透水性試驗4-27 4.1.7 平坦度4-31 4.1.8 抗滑值4-34 4.2 國道3號大甲段南向PAC路段4-37 4.2.1 背景說明4-37 4.2.2 配合設計4-37 4.2.3 鋪面狀況4-41 4.2.4 車轍量試驗4-45 4.2.5 噪音值試驗4-46 4.2.6 透水性試驗4-47 4.2.7 平坦度4-49 4.2.8 抗滑值4-51 4.3 國道3號南投段南向SMA路段4-52 4.3.1 背景說明4-52 4.3.2 配合設計4-53 4.3.3 鋪面狀況4-57 4.3.4 車轍量4-66 4.3.5 Clegg衝擊值4-68 4.3.6 回彈模數(MR)4-70 4.3.7 間接張力強度4-71 4.3.8 平坦度4-73 4.3.9 抗滑值4-74 4.4 PAC鋪面事故統計4-76 4.4.1 國道3號南投段北向PAC路段4-76 4.4.2 國道3號南投段南向PAC路段4-78 4.4.3 國道3號大甲段南向PAC路段4-81 5 第五章 結論與建議5-1 5.1 結論5-1 5.1.1 國道3號南投段PAC路段5-1 5.1.2 國道3號大甲段南向PAC路段5-2 5.1.3 國道3號南投段南向SMA路段5-2 5.2 建議5-3 參考文獻參-1

    工程會施工綱要規範 (2013) 石膠泥瀝青混凝土鋪面,台灣。
    工程會施工綱要規範 (2013) 透水性鋪面,台灣。
    工程會施工綱要規範 (2019) 瀝青混凝土鋪面,台灣。
    王貴月 (2011),石膠泥瀝青混凝土破壞及養護,國立成功大學土木工程研究所碩士論文,台南。
    交通部高速公路局 (2020) 109年國道事故檢討分析報告,交通部高速公路局。
    李有禮 (2002) 石膠泥瀝青混凝土(SMA)簡介,台灣省土木技師公會技師報,NO.298。
    陳建旭、王慶雄 (2011) Clegg衝擊試驗評估鋪面結構之成果分析,臺灣公路工程,第37卷,第4-5期,第30-44頁。
    Alvarez, A.E., A.E. Martin, and C. Estakhri (2010) Drainability of permeable friction course mixtures. Journal of Materials in Civil Engineering, 22(6): 556-564.
    Asphalt Institute (AI) (2020) Construction of Quality Asphalt Pavements:Pavement smoothness. MS-22 Third Edition, Commonwealth of Kentucky.
    AVEC, Inc.. On-board Sound Intensity (OBSI) System. https://www.avec-engineering.com/OBSI.html. Accessed 29 December, 2021.
    Bellin, P. (1998) Stone Mastic Asphalt in Germany. The Asphalt Yearbook 1998: 61-70.
    Brown, E.R., and R.B. Mallick (1995) Evaluation of stone-on-stone contact in stone-matrix asphalt. Transportation Research Record, 1492:208-219.
    Brown, E.R., and L.A. Cooley (1999) Designing Stone Matrix Asphalt Mixtures for Rut-Resistant Pavement. National Cooperative Highway Research Program (NCHRP) Report 425, Transportation Research Board, Washington, D.C.
    Brown, E.R., J.E. Haddock, R.B. Mallick, and T.A. Lynn (1997) Development of a mixture design procedure for stone matrix asphalt (SMA). Journal of the Association of Asphalt Paving Technologists, 66: 1-30.
    Donavan, P.R. (2014). Effect of porous pavement on wayside traffic noise levels. Transportation Research Record, 2403(1): 28-36.
    Elvik, R., and P. Greibe (2005) Road safety effects of porous asphalt: a systematic review of evaluation studies. Accident Analysis & Prevention, 37(3): 515-522.
    European Asphalt Pavement Association (EAPA) (1998) Heavy Duty Surfaces:The arguments for SMA. Heavy Duty Surfaces, Netherlands.
    Hanson, D.I., and R.S. James (2004) Colorado DOT tire/pavement noise study. Report No.CDOT-DTD-R-2004-5, National Center for Asphalt Technology, Auburn University, Auburn.
    Hassan, H.F., S. Al-Oraimi, and R. Taha (2005) Evaluation of open-graded friction course mixtures containing cellulose fibers and styrene butadiene rubber polymer. Journal of Materials in Civil Engineering, 17(4): 416-422.
    International Cybernetics (ICC). Irispro inertial profiler. https://www.internationalcybernetics.com/inertial-profilers/. Accessed 13 January, 2022.
    Kandhal, P.S., C.Y. Lynn, and F. Parker (1998) Characterization tests for mineral fillers related to performance of asphalt paving mixtures. Transportation Research Record, 1638(1):101-110.
    Liu, K.W., A.E. Alvarez, A.E. Martin, T. Dossey, A. Smit, and C.K. Estakhri (2009) Synthesis of Current Research on Permeable Friction Courses: Performance, Design, Construction, and Maintenance. Texas Transportation Institute, Texas.
    Ma, X., Q. Li, Y.C. Cui, and A.Q. Ni (2018) Performance of porous asphalt mixture with various additives. International Journal of Pavement Engineering, 19(4): 355-361.
    McDaniel, R., K. Kowalski, A. Shah, J. Olek, and R. Bernhand (2010) Long-Term Performance of A Porous Friction Coures. FHWA/IN/JTRP-2009/22,SPR-2939, West Lafayette, Indiana.
    Mogawer, W.S., and K.D. Stuart (1995) Effect of coarse aggregate content on stone matrix asphalt rutting and draindown. Transportation Research Record, 1492:1-11.
    Mucka, P. (2017). International roughness index specifications around the world. Road Materials and Pavement Design, 18(4): 929-965.
    National Asphalt Pavement Association (NAPA) (2002) Designing and Constructing SMA Mixtures—State-of-the-Practice. Quality Improvement Series 122, Lanham, Maryland.
    Nelson, P.M., and P.G. Acoustical (1990) Acoustical performance of pervious macadam surfaces for high-speed roads. Transportation Research Record, 1265: 25-30.
    Peltonen, P.V. (1991) Characterization and testing of fiber-modified bitumen composites. Journal of Materials Science, 26: 5618-5622.
    Sayers, M.W., and S.M. Karamihas (1998). The little book of profiling: basic information about measuring and interpreting road profiles. University of Michigan, Transportation Research Institute.
    Sirin, O., E. Kassem, and J.L. Rochat (2016). State-of-the-art review on sustainable design and construction of quieter pavements—Part 1: traffic noise measurement and abatement techniques.Sustainability, 8(8): 742.
    Takahashi, S. (2013) Comprehensive study on the porous asphalt effects on expressways in Japan: based onfield data analysis in the last decade. Road Materials and Pavement Design, 14(2): 239–255.
    Tan, S.A., T.F. Fwa, and K.C. Chai (2004) Drainage Considerations for Porous Asphalt Surface Course Design. Journal of the Transportation Research Board, 1868: 142-149.
    Wang, X (2020) Automotive tire noise and vibrations. Butterworth Heinemann, 13: 297-331.
    Yao, A., H. Ding, X. Zhang, Z. Hu, R. Hao, and T. Yang (2018) Optimum design and performance of porous concrete for heavy-load traffic pavement in cold and heavy rainfall region of NE China. Advances in Materials Science and Engineering, 7082897: 1-15.

    無法下載圖示 校內:2027-06-04公開
    校外:2027-06-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE