| 研究生: |
陳建中 Chen, Jian-Zhong |
|---|---|
| 論文名稱: |
多孔性及石膠泥瀝青混凝土鋪面評估 Pavement Performance of Porous Asphalt Concrete and Stone Mastic Asphalt |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 多孔性瀝青混凝土(PAC) 、石膠泥瀝青混凝土(SMA) 、車轍量 、透水性 、鋪面績效 |
| 外文關鍵詞: | Porous Asphalt Concrete (PAC), Stone Mud Asphalt Concrete (SMA), Rutting, Water Permeability, Pavement Utility |
| 相關次數: | 點閱:144 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
柔性鋪面依使用混合料級配和成分不同,包含較佳排水性及抗滑能力,並可減低行車噪音之多孔性瀝青混凝土(Porous Asphalt Concrete, PAC)及適合應用於重載交通路段和易產生高剪力的轉彎處之石膠泥瀝青混凝土(Stone Mastic Asphalt, SMA)。台灣地處於高溫、潮濕且多雨的亞熱帶氣候地區,夏季氣候高溫炙熱,且汛期長達7個月之久,常挾帶豐沛雨量。國內道路主管機關為提昇道路使用安全並改善鋪面永久變形、車轍、龜裂與剝脫等破壞現象,嘗試選用PAC及SMA取代密級配瀝青混凝土(DGAC)。本研究藉由現地檢測之車轍量、噪音值、CIV、透水量,鑽心試驗之力學性質,以及主辦機關提供平坦度、抗滑值及事故當量(EPDO)數據評估國道3號南投段與大甲段之PAC及SMA鋪面功能性、耐久性及安全性等績效。依據試驗結果和討論,PAC路段顯示抗車輛荷重能力佳、降低交通噪音、提升抗滑性、及維持長期透水性;另外,鋪築後之EPDO於南投段有遞減的趨勢,而於大甲段則無變化,長期績效仍需持續觀察;SMA路段之抗車轍變形能力佳及鋪築前後之CIV值皆高於70,顯現整體鋪面結構穩定。
Flexible pavement has better drainage and anti skid, which depends on the gradation and difference of the mixture used. The Porous Asphalt Concrete (PAC) also reduces he noise of driving and Stone Mastic Asphalt (SMA) applied to the section which has heavy-duty traffic and high shear corner. Taiwan is located in subtropical zones which the climate is high temperature, humidity and rainy. It has extremely high temperature during the summer and the flood season is continued for seven months. The competent authority used PAC and SMA to replace Dense-Graded Asphalt Concrete (DGAC) in order to improve the safety and decrease the damages of the road, for instance, distortion, rut, crack and exfoliation of the pavement. In this study used the rut, noise, CIV, MR and the IDT from the core test of mechanics also the data from the competent authority which provided the flatness, skid resistance and the EPDO to evaluate the safety, durability, functionality of the pavement on the national highway(No.3) between the Nantou section and Dajia section. According to the experiments and the discussion, the PAC section shows that it the loading capacity of vehicle is much better. It decreases the noise of traffic also improve the skid resistance and remain the water permeability. Additionally, the Nantou section which paving the PAC has decreased the EPDO but it doesn’t have the significant changes on the Dajia section. Therefore, it needs to observe consistently for its long-term utility. The SMA pavement has much better anti-rutting deformation performance and the CIV is higher than 70 after paving, it shows that the stable structure of the pavement.
工程會施工綱要規範 (2013) 石膠泥瀝青混凝土鋪面,台灣。
工程會施工綱要規範 (2013) 透水性鋪面,台灣。
工程會施工綱要規範 (2019) 瀝青混凝土鋪面,台灣。
王貴月 (2011),石膠泥瀝青混凝土破壞及養護,國立成功大學土木工程研究所碩士論文,台南。
交通部高速公路局 (2020) 109年國道事故檢討分析報告,交通部高速公路局。
李有禮 (2002) 石膠泥瀝青混凝土(SMA)簡介,台灣省土木技師公會技師報,NO.298。
陳建旭、王慶雄 (2011) Clegg衝擊試驗評估鋪面結構之成果分析,臺灣公路工程,第37卷,第4-5期,第30-44頁。
Alvarez, A.E., A.E. Martin, and C. Estakhri (2010) Drainability of permeable friction course mixtures. Journal of Materials in Civil Engineering, 22(6): 556-564.
Asphalt Institute (AI) (2020) Construction of Quality Asphalt Pavements:Pavement smoothness. MS-22 Third Edition, Commonwealth of Kentucky.
AVEC, Inc.. On-board Sound Intensity (OBSI) System. https://www.avec-engineering.com/OBSI.html. Accessed 29 December, 2021.
Bellin, P. (1998) Stone Mastic Asphalt in Germany. The Asphalt Yearbook 1998: 61-70.
Brown, E.R., and R.B. Mallick (1995) Evaluation of stone-on-stone contact in stone-matrix asphalt. Transportation Research Record, 1492:208-219.
Brown, E.R., and L.A. Cooley (1999) Designing Stone Matrix Asphalt Mixtures for Rut-Resistant Pavement. National Cooperative Highway Research Program (NCHRP) Report 425, Transportation Research Board, Washington, D.C.
Brown, E.R., J.E. Haddock, R.B. Mallick, and T.A. Lynn (1997) Development of a mixture design procedure for stone matrix asphalt (SMA). Journal of the Association of Asphalt Paving Technologists, 66: 1-30.
Donavan, P.R. (2014). Effect of porous pavement on wayside traffic noise levels. Transportation Research Record, 2403(1): 28-36.
Elvik, R., and P. Greibe (2005) Road safety effects of porous asphalt: a systematic review of evaluation studies. Accident Analysis & Prevention, 37(3): 515-522.
European Asphalt Pavement Association (EAPA) (1998) Heavy Duty Surfaces:The arguments for SMA. Heavy Duty Surfaces, Netherlands.
Hanson, D.I., and R.S. James (2004) Colorado DOT tire/pavement noise study. Report No.CDOT-DTD-R-2004-5, National Center for Asphalt Technology, Auburn University, Auburn.
Hassan, H.F., S. Al-Oraimi, and R. Taha (2005) Evaluation of open-graded friction course mixtures containing cellulose fibers and styrene butadiene rubber polymer. Journal of Materials in Civil Engineering, 17(4): 416-422.
International Cybernetics (ICC). Irispro inertial profiler. https://www.internationalcybernetics.com/inertial-profilers/. Accessed 13 January, 2022.
Kandhal, P.S., C.Y. Lynn, and F. Parker (1998) Characterization tests for mineral fillers related to performance of asphalt paving mixtures. Transportation Research Record, 1638(1):101-110.
Liu, K.W., A.E. Alvarez, A.E. Martin, T. Dossey, A. Smit, and C.K. Estakhri (2009) Synthesis of Current Research on Permeable Friction Courses: Performance, Design, Construction, and Maintenance. Texas Transportation Institute, Texas.
Ma, X., Q. Li, Y.C. Cui, and A.Q. Ni (2018) Performance of porous asphalt mixture with various additives. International Journal of Pavement Engineering, 19(4): 355-361.
McDaniel, R., K. Kowalski, A. Shah, J. Olek, and R. Bernhand (2010) Long-Term Performance of A Porous Friction Coures. FHWA/IN/JTRP-2009/22,SPR-2939, West Lafayette, Indiana.
Mogawer, W.S., and K.D. Stuart (1995) Effect of coarse aggregate content on stone matrix asphalt rutting and draindown. Transportation Research Record, 1492:1-11.
Mucka, P. (2017). International roughness index specifications around the world. Road Materials and Pavement Design, 18(4): 929-965.
National Asphalt Pavement Association (NAPA) (2002) Designing and Constructing SMA Mixtures—State-of-the-Practice. Quality Improvement Series 122, Lanham, Maryland.
Nelson, P.M., and P.G. Acoustical (1990) Acoustical performance of pervious macadam surfaces for high-speed roads. Transportation Research Record, 1265: 25-30.
Peltonen, P.V. (1991) Characterization and testing of fiber-modified bitumen composites. Journal of Materials Science, 26: 5618-5622.
Sayers, M.W., and S.M. Karamihas (1998). The little book of profiling: basic information about measuring and interpreting road profiles. University of Michigan, Transportation Research Institute.
Sirin, O., E. Kassem, and J.L. Rochat (2016). State-of-the-art review on sustainable design and construction of quieter pavements—Part 1: traffic noise measurement and abatement techniques.Sustainability, 8(8): 742.
Takahashi, S. (2013) Comprehensive study on the porous asphalt effects on expressways in Japan: based onfield data analysis in the last decade. Road Materials and Pavement Design, 14(2): 239–255.
Tan, S.A., T.F. Fwa, and K.C. Chai (2004) Drainage Considerations for Porous Asphalt Surface Course Design. Journal of the Transportation Research Board, 1868: 142-149.
Wang, X (2020) Automotive tire noise and vibrations. Butterworth Heinemann, 13: 297-331.
Yao, A., H. Ding, X. Zhang, Z. Hu, R. Hao, and T. Yang (2018) Optimum design and performance of porous concrete for heavy-load traffic pavement in cold and heavy rainfall region of NE China. Advances in Materials Science and Engineering, 7082897: 1-15.
校內:2027-06-04公開