簡易檢索 / 詳目顯示

研究生: 陳鴻承
Hung-Cheng, Chen
論文名稱: 硫化鋅摻雜銩,錳系列螢光粉與薄膜之研製及其特性探討
The Preparations and Investigations of the characteristics of ZnS:Tm,Mn Phosphors and Thin films
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 127
中文關鍵詞: 硫化鋅摻雜銩 錳薄膜螢光粉
外文關鍵詞: thin films, phosphors, ZnS, doped Tm Mn
相關次數: 點閱:90下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    硫化鋅(ZnS)具有寬能隙(為3.68eV)的特性,為Ⅱ-Ⅵ族化合物半導體成員,在商業上經常使用作為螢光粉,同時也應用在薄膜電激發光元件上。優異的發光特性,且可發出可見光使其適合作為螢光材料,主要的用途是在於照明光源、顯示器元件與光輻射偵測器等方面。近年來,由於日亞公司發明第一顆藍光LED後,進而再提出用InGaN LED發出的藍光去激發YAG:Ce+3螢光粉發出黃光和未吸收的藍光混成白光,白光固態照明自此引起產學界一股熱烈地鑽研探討。

    本論文先探討ZnS:Mn及ZnS:Tm單一摻雜的發光特性。並利用RF-Sputter濺鍍成螢光薄膜,發現在摻雜錳1mol%、退火800℃時可得最佳發光表現,其PL光譜為一發射576nm橘黃光的波鋒,並經公式轉成C.I.E座標值為(0.50,0.48)。我們發現發光強度與XRD峰值強度呈正相關,與半高寬值呈負相關;粗糙度隨著退火溫度越高、摻雜量越多而變的越差;穿透度也是隨著退火溫度越高、摻雜量越多而變的越差,且因錳摻雜不同、退火溫度不同時能隙(band gap)會有所改變,隨著摻雜量增加能隙隨之增加,但摻雜3mol%時則又變小;隨著退火溫度增加能隙隨之增加。

    ZnS:Tm螢光粉在氬氣氣氛下或真空下(~10-1)皆以摻雜2mol%、持溫3hr有最佳的發光表現,在氬氣氣氛下其PL光譜為一發射472nm藍光的窄波鋒,並經公式轉成C.I.E座標值為(0.24,0.25);在真空下其PL光譜為一發射約500nm藍綠光的寬波鋒,並經公式轉成C.I.E座標值為(0.21,0.32)。真空下煆燒時發光會紅移成藍綠光,但有較佳的發光相對強度表現。

    由於日亞公司混成白光方法須作波長轉換而造成能量損失,因此本論文利用ZnS:Mn+Tm co-doping方式(ZnS發450nm藍光、Mn發576nm橘黃光、Tm發472nm藍綠光)混成白光,不同的是其不用作波長的轉換,不會造成太多的能量損失。且本論文朝螢光粉及薄膜兩方向進行,ZnS:Mn+Tm螢光粉在氬氣氣氛下或真空下(~10-1)皆以铥摻雜2mol%、錳摻雜0.075mol%時較符合混成白光的條件。在氬氣氣氛下其PL光譜為一發射470nm藍光的波鋒與583nm橘黃光的波峰,並經公式轉成C.I.E座標值為(0.31,0.31);在真空下其PL光譜與在氬氣氣氛下相差不多,並經公式轉成C.I.E座標值為(0.32,0.31)。且在真空下煆燒有較佳的發光相對強度表現。

    Abstract

    Zinc sulfide (ZnS), as II-VI semiconductors with a wide band gap energy of 3.68eV,have received much attention due to their excellent luminescence properties and commercially used as phosphors applicated in electroluminescence devices. They are candidate materials for phosphors that emit visible light. The major and important applications of phosphors are used as light sources, display devices, radiation detectors and so on. Recently , the first of blue LED is patented by Nichia Chemical and then they use blue InGaN-based LED to excite YAG:Ce3+-based phosphor, the yellow light emitting from the phosphor and the residual blue light produce the white light. Hence,solid white light sources are studied by industry and academia avidly.

    Firstly , this report studies the luminescence of ZnS:Mn film and ZnS:Tm phosphors separately. ZnS:Mn film is deposited by the RF-magnetron sputtering system. We find the best of the luminescence is on Mn doping 1 mol%、annealing at 800℃. The PL of ZnS:Mn film results in the orange-yellow emission peaked at 576nm, and C.I.E(0.50,0.48)is obtained by the PL spectrum. We also find the intensity of the luminescence has a direct ratio with the intensity of XRD and has an inverse ratio with the FWHM;The roughness and the transmittance become the worse with the higher anneal temperature and the more dope. The band gap changes in the different of anneal temperature and dope;The band gap becomes large with the more dope and the higher anneal temperature, but it becomes small on Mn doping 3mol%.

    ZnS:Tm phosphor has the best of the luminescence in Ar or in vacuum(~10-1 atm) is on Tm doping 2mol%、sintering 3 hr. In Ar, the PL of ZnS:Tm phosphor results in the narrow blue emission peaked at 472nm, and C.I.E(0.24,0.25)is obtained by the PL spectrum;In vacuum, the PL of ZnS:Tm phosphor results in the wide blue-green emission peaked at 500nm, and C.I.E is(0.21,0.32). Although the luminescence red shifts to blue-green emission in vacuum, it is better in vacuum.

    The approache patented by Nichia Chemical is limited due to wavelength conversion of the injected photon. So this report present a method through co-doping ZnS:Mn+Tm(ZnS emites 450nm blue light、Tm emites 472nm blue light、Mn emites 580nm yellow light )to produce the white light. But it takes little loss of energy because of no wavelength conversion of the injected photon. ZnS:Mn+Tm phosphor which is agreeable to the condition of white light in Ar or in vacuum(~10-1 atm) is on Tm doping 2mol%、Mn doping 0.075mol%. In Ar, the PL of ZnS:Mn+Tm phosphor results in the blue emission peaked at 470nm and the orange-yellow emission peaked at 583nm , and C.I.E(0.31,0.31)is obtained by the PL spectrum;In vacuum, the PL of ZnS:Mn+Tm phosphor results in the same emission , and C.I.E is(0.32,0.31). And the luminescence is better in vacuum.

    目 錄 中文摘要.....................................Ⅰ 英文摘要.....................................Ⅲ 誌謝...........................................Ⅴ 目錄...........................................Ⅵ 圖目錄.........................................Ⅹ 表目錄 ...........................................................ⅩⅥ 第一章 緒論.......................................................1 1.1 研究背景.......................................................1 1.2 研究動機.......................................................2 1.2.1 EL的分類.....................................................3 1.2.2 ACTFEL元件的優點與缺點.......................................4 1.2.3 彩色薄膜電激發光顯示器—螢光層的結構.........................5 1.3 研究目的.......................................................6 第二章 理論基礎與文獻回顧..........................................7 2.1 螢光體材料簡介.............................................7 2.1.1 螢光材料之發展過程..................................7 2.1.2 螢光材料的種類與應用................................9 2.2 電激發光元件簡介...........................................11 2.2.1 電激發光元件之歷史演進..............................11 2.2.2 電激發光(Electroluminescent ,EL)之發光機制........12 2.2.3 元件結構—雙絕緣層結構..............................14 2.2.4 各層材料需求........................................16 2.3 硫化鋅螢光體材料簡介.......................................19 2.3.1 硫化鋅發展歷史......................................19 2.3.2 硫化鋅晶體結構......................................19 2.3.3 ZnS:Mn 螢光光譜介紹.................................21 2.3.4 ZnS:Tm 螢光光譜介紹.................................23 2.4 CIE 色度座標...............................................23 2.5 濺鍍理論...................................................25 2.5.1 電漿反應............................................26 2.5.2 濺鍍機制............................................26 2.5.3 薄膜成長............................................28 2.5.4 濺鍍參數............................................31 2.6 濃度淬滅理論...............................................31 2.7 斯托克斯效應...............................................32 2.8 晶體場(Crystal Field)....................................33 第三章 實驗方法及步驟..............................................37 3.1 實驗藥品...................................................37 3.2 製備ZnS:Mn、Tm螢光粉及螢光層薄膜之步驟.....................38 3.2.1 製備ZnS:Tm、ZnS:Mn+Tm螢光粉與厚膜電激發光元件......38 3.2.2 製備ZnS:Mn、ZnS:Mn+Tm螢光層薄膜與薄膜電激發光元件..39 3.2.3 濺鍍步驟與濺鍍參數..................................40 3.2.4 退火處理方式........................................41 3.3 特性量測...................................................42 3.3.1 膜厚性質量測........................................42 3.3.2 結構性質量測........................................43 3.3.3 成分性質量測........................................47 3.3.4 光學性質量測........................................48 第四章 結果與討論.................................................53 4.1 ZnS:Tm 螢光粉之結果探討...................................53 4.1.1 在Ar氣氛下煆燒之探討.......................................53 (a) 不同Tm摻雜濃度、不同煆燒溫度下.............................53 (b) Tm=2 mol%摻雜濃度、煆燒1150℃、不同持溫下..................60 (c) Tm=2 mol%摻雜濃度、煆燒1150℃、持溫3 hr下不同光學量測 ...........................................................62 4.1.2 在真空(~10-1 atm)下煆燒之探討............................64 (a) 不同Tm摻雜濃度、不同煆燒溫度下.......................64 (b) Tm=2 mol%摻雜濃度、煆燒1075℃、不同持溫下............69 (c) Tm=2 mol%摻雜濃度、煆燒1075℃、持溫3 hr下不同光學量測70 4.2 ZnS:Tm+Mn 螢光粉之結果探討................................73 4.2.1 在Ar氣氛下煆燒之探討................................73 (a) Tm=2 mol% 不同Mn摻雜濃度、不同煆燒溫度下.............73 (b) Tm=2 mol%、Mn=0.075mol%、煆燒1100℃下不同光學量測....78 4.2.2 在真空(~10-1 atm)下煆燒之探討.............................80 (a) Tm=2 mol% 不同Mn摻雜濃度、不同煆燒溫度下.............80 (b) Tm=2 mol%、Mn=0.075mol%、煆燒1075℃下不同光學量測....85 4.3 ZnS:Mn 螢光薄膜之結果探討.................................87 4.3.1 在不同成長壓力下之探討..............................87 4.3.2 在不同濺鍍功率下之探討..............................90 4.3.3 在不同基板溫度下之探討..............................92 4.3.4 在不同退火溫度下之探討..............................94 4.3.5 在不同錳(Mn)摻雜濃度下之探討......................103 4.4 ZnS:Tm+Mn 螢光薄膜之結果探討..............................112 4.4.1 在不同成長壓力下之探討..............................112 4.4.2 在不同濺鍍功率下之探討..............................114 4.4.3 在不同退火溫度下之探討..............................116 第五章 結論與未來展望..............................................119 5.1 結論.......................................................119 5.2 未來展望及改善.............................................122 參考文獻............................................................123 圖 目 錄 圖1-1 平面顯示器類別...............................................1 圖1-2 四種類型的EL元件.............................................3 圖1-3 全彩顯示器元件之螢光層的三種排列方式.........................5 圖2-1 雙絕緣層類(Double insulating layer type)的TFEL結構.........12 圖2-2 雙絕緣層式ACTFEL之能帶圖與發光機制...........................15 圖2-3 硫化鋅的(a)閃鋅礦結構和(b)纖維鋅礦結構...................20 圖2-4 硫化鋅之平衡相圖.............................................20 圖2-5 ZnS:Mn能階跳躍圖............................................22 圖2-6 ZnS:Mn與ZnS:Tm的發射光譜...................................23 圖2-7 CIE色度座標圖................................................24 圖2-8 (a)發射光譜與CIE色度座標對應圖..............................25 (b)發射光譜與σ值對應表......................................25 圖2-9 高能原子撞擊靶材之濺鍍示意圖.................................26 圖2-10 入射離子撞擊靶材引起之反應圖................................27 圖2-11 濺鍍速率V.S反應氣氛壓力.....................................28 圖2-12 成核過程之概述..............................................29 圖2-13 三種晶格成長模式之概述......................................30 圖2-14 Thornton沈積層結構模式區域圖................................30 圖2-15 斯托克斯效應(Stokes' law)示意圖.............................32 圖2-16 斯托克斯轉移(Stokes’ shift)示意圖..........................33 圖2-17 (a)3d能階因晶體場分裂的情況................................34 (b)d5能階因立方晶體場分裂之情況............................35 圖2-18 d5 Tanabe-Sugano diagrams...................................36 圖3-1 厚膜電激發光元件實驗流程.....................................38 圖3-2 製作流程及溫度曲線...........................................40 圖3-3 製作薄膜流程圖...............................................42 圖3-4 α-step量測的掃描模式.........................................43 圖3-5 布拉格繞射原理示意圖.........................................44 圖3-6 掃瞄式電子顯微鏡主要構造示意圖...............................45 圖3-7 電子束與試片發生許多不同形式之交互作用.......................46 圖3-8 能量分散式光譜儀(EDS)構造示意圖............................48 圖3-9 測量螢光體激發光譜之實驗裝置圖...............................50 圖3-10 測量螢光體發射光譜之實驗裝置圖..............................50 圖4-1 煆燒1050℃下之PL.............................................54 圖4-2 煆燒1100℃下之PL.............................................54 圖4-3 煆燒1150℃下之PL.............................................55 圖4-4 煆燒1200℃下之PL.............................................55 圖4-5 不同摻雜量在不同煆燒溫度下的強度對應圖.......................56 圖4-6 不同煆燒溫度在不同摻雜量下的強度對應圖.......................56 圖4-7 硫化鋅能階跳躍圖.............................................57 圖4-8 Tm發光中心能階跳躍圖.........................................57 圖4-9 在煆燒1150℃下之不同摻雜銩濃度之XRD..........................58 圖4-10 在摻雜銩2 mol%下之不同煆燒溫度之XRD.........................59 圖4-11 ZnS 粉末之繞射圖............................................59 圖4-12 ZnS:Tm 粉末之繞射圖.........................................60 圖4-13 在摻雜铥2 mol%、煆燒1150℃、不同持溫下之PL..................61 圖4-14 在摻雜铥2 mol%、煆燒1150℃、不同持溫下之XRD.................61 圖4-15 在摻雜铥2 mol%、煆燒1150℃、持溫3 hr下之PL..................62 圖4-16 在摻雜铥2 mol%、煆燒1150℃、持溫3 hr下之CL..................63 圖4-17 在摻雜铥2 mol%、煆燒1150℃、持溫3 hr下之C.I.E...............63 圖4-18 ZnS:Tm波峰Fitted之波型圖...................................65 圖4-19 煆燒1050℃下之PL............................................65 圖4-20 煆燒1075℃下之PL............................................66 圖4-21 煆燒1100℃下之PL............................................66 圖4-22 不同摻雜量在不同煆燒溫度下的強度對應圖......................67 圖4-23 不同煆燒溫度在不同摻雜量下的強度對應圖......................67 圖4-24 在煆燒1075℃下之不同銩摻雜濃度之XRD.........................68 圖4-25 在摻雜銩2 mol%下之不同煆燒溫度之XRD.........................69 圖4-26 在摻雜铥2 mol%、煆燒1075℃、不同持溫下之PL..................70 圖4-27 在銩摻雜2mol%、煆燒1075℃、不同持溫下之XRD..................71 圖4-28 在摻雜銩2 mol%、真空下煆燒1075℃、持溫3 hr之PL..............71 圖4-29 在摻雜銩2 mol%、真空下煆燒1075℃、持溫3 hr之CL..............72 圖4-30 在摻雜銩2 mol%、真空下煆燒1075℃、持溫3 hr之C.I.E...........72 圖4-31 在掺雜銩2mol%、不同錳掺雜量、煆燒1050℃Ar氣氛下之PL.........74 圖4-32 在掺雜銩2mol%、不同錳掺雜量、煆燒1075℃Ar氣氛下之PL.........75 圖4-33 在掺雜銩2mol%、不同錳掺雜量、煆燒1100℃Ar氣氛下之PL.........76 圖4-34 在摻雜銩2mol%、不同錳摻雜濃度、煆燒1100℃Ar氣氛下之XRD......77 圖4-35 在摻雜銩2 mol% / 錳0.075 mol%、Ar氣氛下之不同煆燒溫度之XRD..78 圖4-36 為摻雜銩2 mol% / 錳0.075 mol%、在氬氣下煆燒1100℃之PL.......79 圖4-37 為摻雜銩2 mol% / 錳0.075 mol%、在氬氣下煆燒1100℃之CL.......78 圖4-38 為摻雜銩2 mol% / 錳0.075 mol%、在氬氣下煆燒1100℃之C.I.E....79 圖4-39 在掺雜銩2mol%、不同錳掺雜量、煆燒1050℃真空下之PL...........81 圖4-40 在掺雜銩2mol%、不同錳掺雜量、煆燒1075℃真空下之PL...........82 圖4-41 在掺雜銩2mol%、不同錳掺雜量、煆燒1100℃真空下之PL...........83 圖4-42 在摻雜銩2mol%、不同摻雜錳濃度、煆燒1075℃真空下之XRD........84 圖4-43 在摻雜銩2 mol% / 錳0.075 mol%、真空下之不同煆燒溫度之XRD....84 圖4-44 在摻雜銩2 mol% / 錳0.075 mol%、真空下煆燒1075℃之PL.........85 圖4-45 在摻雜銩2 mol% / 錳0.075 mol%、真空下煆燒1075℃之CL.........85 圖4-46 在摻雜銩2 mol% / 錳0.075 mol%、真空下煆燒1075℃之C.I.E......86 圖4-47 在錳摻雜1mol%、不同成長壓力下之PL...........................88 圖4-48 在錳摻雜1mol%、不同成長壓力下之XRD..........................89 圖4-49 在錳摻雜1mol%、不同成長壓力下之半高寬.......................89 圖4-50 在錳摻雜1mol%、不同濺鍍功率下之PL...........................90 圖4-51 在錳摻雜1mol%、不同濺鍍功率下之XRD..........................91 圖4-52 在錳摻雜1mol%、不同濺鍍功率下之半高寬.......................92 圖4-53 在錳摻雜1mol%、不同基板溫度下之PL...........................93 圖4-54 在錳摻雜1mol%、不同基板溫度下之XRD..........................93 圖4-55 在錳摻雜1mol%、不同基板溫度下之半高寬.......................94 圖4-56 在錳摻雜1mol%、不同退火溫度下之PL...........................95 圖4-57 在錳摻雜1mol%、不同退火溫度下之XRD..........................95 圖4-58 在錳摻雜1mol%、退火400℃下之AFM.............................96 圖4-59 在錳摻雜1mol%、退火600℃下之AFM.............................97 圖4-60 在錳摻雜1mol%、退火800℃下之AFM.............................97 圖4-61 在錳掺雜1mol%濃度、退火400℃下之SEM.........................98 圖4-62 在錳掺雜1mol%濃度、退火600℃下之SEM.........................98 圖4-63 在錳掺雜1mol%濃度、退火800℃下之SEM.........................99 圖4-64 在錳摻雜1mol%、不同退火溫度下...............................100 圖4-65 各退火溫度之對應能隙........................................100 圖4-66 在摻雜錳1mol%、退火800℃之PL................................101 圖4-67 在摻雜錳1mol%、退火800℃之CL................................101 圖4-68 在摻雜錳1mol%、退火800℃之C.I.E.............................102 圖4-69 不同錳掺雜濃度、退火800℃下之PL.............................103 圖4-70 不同錳掺雜濃度、退火800℃下之PLE............................104 圖4-71 不同錳掺雜濃度、退火800℃下之XRD............................105 圖4-72 不同錳掺雜濃度、退火800℃下之半高寬.........................105 圖4-73 在錳掺雜0.5mol%濃度、退火800℃下之AFM.......................106 圖4-74 在錳掺雜1mol%濃度、退火800℃下之AFM.........................107 圖4-75 在錳掺雜2mol%濃度、退火800℃下之AFM.........................107 圖4-76 在錳掺雜3mol%濃度、退火800℃下之AFM.........................108 圖4-77 在錳掺雜0.5mol%濃度、退火800℃下之SEM.......................108 圖4-78 在錳掺雜1mol%濃度、退火800℃下之SEM.........................109 圖4-79 在錳掺雜2mol%濃度、退火800℃下之SEM.........................109 圖4-80 在錳掺雜3mol%濃度、退火800℃下之SEM.........................110 圖4-81 在不同錳掺雜濃度、退火600℃下之穿透度.......................111 圖4-82 在不同錳掺雜濃度、退火600℃下之對應能隙.....................111 圖4-83 在銩摻雜2mol%、錳摻雜1mol%、在不同成長壓力下之PL............113 圖4-84 在銩摻雜2mol%、錳摻雜1mol%、在不同成長壓力下之XRD...........114 圖4-85 在銩摻雜2mol%、錳摻雜1mol%、在不同濺鍍功率下之PL............115 圖4-86 在銩摻雜2mol%、錳摻雜1mol%、在不同濺鍍功率下之XRD...........116 圖4-87 在銩摻雜2mol%、錳摻雜1mol%、在不同退火溫度下之PL............117 圖4-88 在銩摻雜2mol%、錳摻雜1mol%、在不同退火溫度下之C.I.E.........117 圖4-89 在銩摻雜2mol%、錳摻雜1mol%、在不同退火溫度下之XRD...........118 表 目 錄 表2-1 各種硫化物之物性特性表.......................................17 表2-2 彩色薄膜EL元件的亮度與發光效率比較圖.........................18 表2-3 硫化鋅的物理性質.............................................21 表3-1 ZnS:Mn與ZnS:Mn+Tm之鍍膜參數................................41 表4-1 ZnS:Mn之濺鍍參數............................................87 表4-2 在錳摻雜1mol%、不同退火溫度下之平均粗糙度....................96 表4-3 各退火溫度之能隙大小.........................................99 表4-4 錳各摻雜在退火800℃下之平均粗糙度............................106 表4-5 錳各摻雜之能隙大小...........................................110 表4-6 ZnS:Mn+Tm之濺鍍參數.........................................112

    【1】 “Yearbook of machinery Statistics 1996”, Ministry of International
    Trade and Industry.
    【2】 “Yearbook of World Electronics Data 1996”, Elsevier Advanced
    Technology , U.K.
    【3】 Tonneson, L.C and Fox, G.J, “Elements”, April/May 20, 1996.
    【4】 衣立新,”無機薄膜電致發光顯示的研究進度”,大陸北方交通大學光電子技術研
    究所,2000.
    【5】 Takeda M, Kanatani Y, Kishishita H, Uede H. “Yellow Emission thin Film
    Electroluminescence Displays [J]”. Proc. SPIE, p34~36, 1983.
    【6】 Philip D. Rack, Paul H. Holloway, “Material Science and Engineering”,
    p.171~219,1998.
    【7】 Markku Leskela , “Journal of Alloys and Compounds”,p275~277,1998.
    【8】 Yoshimasa A. Ono, “Electroluminescent displays : Chap. 5 Materials
    Requirements ”, (1995) 61-69, 121-139.
    【9】 蔡淑卿,“ZnO與ZnS摻錳螢光薄膜之發光性質研究”,國立成功大學材料科學及工
    程學系碩士論文,民國93年。
    【10】Noboru Miura , ” Electroluminescence of ZnF2 Thin-Films Doped with Rare-
    Earth Ions” ,Appl. Phys. Vol.31(1992)pp.51-59.
    【11】賴耿陽,“IC製程之濺射技術”,復漢出版社,民國86年,84-88頁。
    【12】螢光體Handbook編集委員會; “螢光體Handbook”, Ohm 社,東京,(1980)。
    【13】鹽谷繁雄; “ELECTRONIC CERAMICS”, 11, 17, (1980)
    【14】T. Inoguchi, M. Takeda, Y. Kakihara, Y. Nakata and M. Yoshida,Digest of
    1974 SID International Symposium, (1974) 84.
    【15】P. M. Alt, “Thin-film electroluminescent displays:Device
    characteristics and performance”, Proc. SID 25, (1984) 123-146.
    【16】W. E. Howard, IEEE Trans. Electron Device, “The Importance of Insulator
    Properties in a Thin-Film Electroluminescent Device” ,ED-24, (1977) 903-
    908.
    【17】W. E. Howard, “Importance of insulator properties in a thin-film
    electroluminescent devices”, Proc. SID 18, (1977) 119-124.
    【18】S. K. Tiku and G. C. Smith, “Choice of dielectrics for TFEL displays”,
    IEEE Trans. Electron Device, ED-31, (1984) 105-108.
    【19】Shigeo Shionoya , “Phosphor Handbook”, CRC Press LLC, New York, U.S.A.
    (1999)
    【20】徐修生,“硫化鋅摻錳螢光粉之製備與性質研究”,國立成功大學材料科學及工程
    學系碩士論文,民國91年。
    【21】A. H. Kitai, “Solid State Luminescence ” , CHAPMAN & HALL,London, U.K.
    (1993)
    【22】 Romesh C. SHARMA and Y. Austin CHANG, “Thermodynamic analysis and
    phase equilibria calculateions for the Zn-Te, Zn-Se, and Zn-S
    systems”, J. Crystal Growth 88, (1988) 193-204.
    【23】Aanegola,S.;Petroski,J.;Radkov,E.SPIE 2003,10,16.
    【24】Nakamura,Y. Optics&Photonics News 2004,4,25.
    【25】Rohwer,L.S.;Srivastava,A.M. Electrochem.Soc.Interface 2003,12,36.
    【26】A. Boudghene Stambouli,”Blue emitting ACPEL devices based upon ZnS:Tm,
    Li”, Thin Solid Films 283 (1996) 204-208
    【27】Noboru Miura,” Electroluminescence of ZnF2 Thin-Films Doped with Rare-
    Earth Ions”,Jpn. J. Appl. Phys Vol.31 (1992)pp.51-59
    【28】蘇勉曾、吳世康,“發光材料”,發光材料,第四卷,1-39頁

    【29】W. Walter, “Optimum Phosphor Blends for Fluorescent Lamps”, Applied
    Optics 10 (5), (1971) 1108-1113.
    【30】楊錦章,“基礎濺鍍電漿”,電子發展月刊,民國72 年,68期,13頁。
    【31】Kiyotaka Wasa and Shigeru Hayakawa,“Handbook of sputter deposition
    technology : Chap 5 Deposition of Compound thin films ”, Noyes , U.S.A.
    (1992) 125-146.
    【32】B. Chapman, “Glow Discharge Processes”, John Wiley & Sons.Inc. N.Y.,
    U.S.A., (1980), Chap.6..
    【33】F. Shinoki and A. Itoh, “Mechanism of RF reactive sputtering”, J.
    Appl. Phys. 46, (1975) 3381-3384.
    【34】S. Berrh, H. O. Blom, T. Larsson and C. Nender, “Modeling of reactive
    sputtering of compound materials”, J. Vac. Sci. Tech. A5,(1987) 202-207.
    【35】M. Harsdorff, “The influence of charged point defects and contamination
    of substrate surfaces on nucleation ”, Thin Solid Films 116, (1984), 55-
    74.
    【36】田民波,劉德令,“薄膜科學與技術手冊”上冊,機械出版社,14頁。
    【37】J. Venables, “Nucleation and growth of thin films”, Rep. Phys. 47,
    (1984) 399-459.
    【38】J. A. Thornton, “Influence of apparatus geometry and deposition
    conditions on the structure and topography of thick sputtered
    coatings”, J. Vac. Sci. Tech. 11, (1974) 666-670.
    【39】J. A. Thornton, “Influence of substrate temperature and deposition rate
    on structure of thick sputtered Cu coatings”, J. Vac.Sci. Tech. 12(4),
    (1975) 830-835.
    【40】徐敘瑢編著、陳憲偉校訂,”光電材料與顯示技術”,五南出版社
    【41】Kamimura, A., Sugano, S., and Tanabe, Y., “Ligand Field Theory and Its
    Application”,First Edition, Shokabo,pp.269-321in Japanese ,1969.
    【42】G.Blassr and B.C.Grabmaier, “Luminescence Material”, 19,
    Springer,Berlin.
    【43】D.L.Dexter, Chem. Phys.22 (6), 1063 (1954).
    【44】B.Walter, Ann. Physik 36, 502, 518 (1889).
    【45】P.D.Johnson and F.E. Williams, J. Chem. Phys.18, 1477 (1950).
    【46】李碧琳等, “ZnS電至發光磷光體製備過程中摻入微量Cu和Mn對微晶結構的影響”,
    物理學報,Vol.40,No3, Mar.1981.
    【47】Powder Diffraction File(Hanawalt method) Mineral Section,Set1~5
    (Revised) Joint Committee on powder diffraction standards Nov.1967.
    【48】Basdevant, J.-L. and Dalibard, J. “The Stokes Shif.”, §1.1 in The
    Quantum Mechanics Solver:How to Apply Quantum Theory to Modern Physics.
    Berlin: Springer-Verlag, pp. 4-5, 2000.
    【49】DiBartolo, B.,“Optical Interaction in solid”, John Wiley & Sons, 1968,
    pp.420-427.
    【50】James E. Huheey, “Inorganic Chemistry”, 2nd. Ed. Harper & Row, 350
    (1978)
    【51】Charles Kittel, Introduction to Solid State Physics, 7th ed., (1997)
    【52】柯清水,“無機化學”,水牛出版社,pp.387-414
    【53】徐開鴻,“氧化鋅鎵系螢光材料的製備與其發光特性之研究”,大同工學院材料工
    程學系, (1998)
    【54】Yukito Tanabe, Satoru Sugano; J. Phys/ Soc. Japan. 9 (1954) 753
    【55】William L. Jolly, “Modern Inorganic Chemistry”, 2nd Edit., McGraw-
    Hill, (1991)
    【56】張哲維,”氧化鋅螢光材料及氧化鋅奈米線之研製及其特性探討”, 國立成功大學
    電機工程研究所碩士論文
    【57】陳力俊等著,”材料電子顯微鏡學”,全華科技圖書公司,pp.286-316
    【58】 JCPDS Card資料庫:ZnS (892942)、ZnS:Tm(791900)、ZnS:Mn(110513)
    【59】A.Boudghene Stambouli, “Electroluminescence AC powder displays based
    upon ZnS:Tm,Li” Applied Energy 64(1999),pp.207-213

    【60】R. Weidemann, H.-E. Gumlich, M. Kupsch, and H.-U. Middelmann , U.Becker,
    “Partial density of Mn 3d states and exchange-splitting changes in Zn1-
    xMnxY (Y=S,Se,Te)”, Germany, Physical Review B 45(3), (1992) 1172-1180.
    【61】Y. Natsume, H. Sakata, “Zinc oxide films prepared by sol-gel spin-
    coating”, Thin Solid Films 372(2000)p.30-36

    下載圖示 校內:2007-06-22公開
    校外:2008-06-22公開
    QR CODE