簡易檢索 / 詳目顯示

研究生: 蘇泓諭
Su, Hung-Yu
論文名稱: 單載波空間調變系統中使用頻域前置濾波器之樹狀搜尋偵測演算法
Tree Search Detection Algorithms with Frequency-Domain Prefiltering for Single-Carrier Spatial Modulation Systems
指導教授: 賴癸江
Lai, Kuei-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 空間調變單載波傳輸系統最大概似法則樹狀搜尋演算法M演算法頻域前置濾波器
外文關鍵詞: spatial modulation, single-carrier transmission, maximum likelihood detection, tree search algorithm, M-algorithm, frequency-domain prefilter
相關次數: 點閱:205下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在使用單載波之空間調變系統中,處理天線間訊號干擾及多重路徑所產生之符元間干擾為重要議題。其中使用線性等化器處理接收訊號所產生之複雜度很小,但錯誤率效能卻非常不理想。而最大概似偵測器具有最佳之錯誤率效能,然而在星座點數較大或區塊長度增加的情況,其複雜度會呈指數性地提升。為簡化其複雜度,使用樹狀搜尋之M演算法有助於減少大量運算,因此有文獻利用通道之區塊循環特性直接使用M演算法,但因通道呈衰減特性,所以此做法需保留大量分枝數以達成良好的錯誤率效能,但這會使樹狀搜尋之複雜度頗高。本篇論文提出使用前置頻域濾波器以提升其效能,透過適當地前置濾波器設計以改善等效通道,使得做樹狀搜尋時所需保留之分枝數降低;而前置濾波的部份,因利用頻域濾波器處理接收訊號,所產生之複雜度並不高,故整體複雜度相對較低。根據模擬結果顯示,本論文所提出之演算法與其他M演算法比較,在錯誤率效能相近的情況下,整體所需之複雜度下降許多。

    Combating inter-antenna interference (IAI) and inter-symbol interference (ISI) caused by multipath channels is a very important issue in single-carrier spatial modulation (SC-SM) systems. Although using linear equalizers achieves a low complexity, the bit–error-rate (BER) performance is far from optimal. The maximum likelihood detector (MLD) gives the optimal BER performance; however, the complexity increases exponentially with a larger constellation size or a longer data block length. Taking advantage of the block circulant characteristic of the channel in the SC-SM systems, the M-algorithm can be directly applied to reduce the complexity of the MLD. Due to the fading channels, however, this method needs to retain a large number of branches to maintain a good BER performance, which results in a high complexity in tree search. In the thesis, we propose to precede the M-algorithm with an appropriately designed frequency-domain prefilter to improve the equivalent channel, so that the number of branches retained by the M-algorithm (and thus the complexity of tree search) can be significantly reduced. Since the signal processing and design of the prefilter are done in the frequency domain, the complexity overhead incurred by prefiltering is relatively small. Simulation results demonstrate that compared to the conventional M-algorithm, the proposed algorithm achieves the same BER performance with a considerably lower complexity

    摘要 I Extended Abstract II 目錄 V 圖目錄 VII 表目錄 VIII 第一章 導論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文章節提要 3 第二章 單載波區塊傳輸空間調變系統 4 2.1 空間調變 4 2.2 空間調變訊號模型 6 2.2.1 傳送訊號模型 6 2.2.2 通道與接收訊號模型 8 2.3 使用OFDM於SM系統之缺點 10 第三章 單載波區塊傳輸系統之偵測器 12 3.1 單輸入單輸出系統之單載波區塊傳輸樹狀搜尋演算法 12 3.1.1 系統模型 12 3.1.2 最大概似偵測器 13 3.1.3 運用於單載波區塊輸之樹狀搜尋演算法 14 3.2 應用於單載波區塊傳輸空間調變系統之偵測器 21 3.2.1 線性等化器 21 3.2.2 ZF 線性等化器[4] 24 3.2.3 MMSE 線性等化器[4] 25 3.2.4 M-演算法 25 第四章 提出之演算法 29 4.1 動機 29 4.2 MMSE 準則前置濾波器 30 4.2.1 目標脈衝響應(Target Impulse Response) 30 4.2.2 利用最小均方誤差準則推導前置濾波器(MMSE) 32 4.2.3 等效通道與目標脈衝響應之關係 40 4.2.4 FDF-M演算法 42 4.3 限制等效通道長度之FDF-M 44 4.3.1 等效通道變化 44 4.3.2 利用最小均方誤差準則推導前置濾波器(MMSE) 46 4.3.3 等效通道與目標脈衝響應之關係 48 4.3.4 限制等效通道長度下之FDF-M演算法 49 4.4 訊雜比 50 4.4.1 SNR之定義 50 4.4.2 SNR之模擬結果 53 4.5 複雜度 58 第五章 模擬結果 59 5.1 模擬環境及模擬參數 59 5.2 模擬結果及分析 61 5.2.1 各種接收端設計下SNR對錯誤率之影響 61 5.2.2 目標脈衝響應長度對錯誤率之影響 66 5.2.3 等效通道長度對錯誤率之影響 68 5.2.4 系統複雜度 70 第六章 結論與未來研究方向 71 參考文獻 72

    [1] S. Sugiura and L. Hanzo, “Single-RF spatial modulation requires single-carrier transmission: Frequency-domain turbo equalization for dispersive channels,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4870–4875, Oct. 2015.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12, no. 8, pp. 545–547, Aug. 2008.
    [3] P. Yang, M. Di Renzo, Y. Xiao, S. Li, and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surv. Tuts., vol. 17, no. 1, pp. 6–26, Mar. 2015.
    [4] B. Zhou, Y. Xiao, P. Yang, J. Wang, and S. Li, “Spatial modulation for single carrier wireless transmission systems,” in Proc. 6th Int. ICST Conf. Commun. Netw. China, Harbin, China, Aug. 2011.
    [5] L. Xiao, D. Lilin, Y. Zhang, Y. Xiao, P. Yang, and S. Li, “A low complexity detection scheme for generalized spatial modulation aided single carrier systems,” IEEE Commun. Lett., vol. 19, no. 6, pp. 1069–1072, Jun. 2015.
    [6] N. Benvenuto and S. Tomasin, “On the Comparison Between OFDM and Single Carrier Modulation with a DFE Using a Frequency-Domain Feedforward Filter,” IEEE Transactions on Communications, vol. 50, no. 6, pp. 947-955, Jun. 2002.
    [7] J. J. Jia, S. J. Wang, and K. C. Lai, “Hybrid-domain sequence detector for training sequence-aided single-carrier block transmission signals,” IEEE Trans. Wireless Commun., vol. 14, no. 12, pp. 6565–6578, Dec. 2015.
    [8] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges, opportunities and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.
    [9] R. Y. Mesleh, H. Haas, C. W. Ahn, and S. Yun, “Spatial modulation-A new low complexity spectral efficiency enhancing technique,” in Proc. IEEE Int. Conf. Commun. Netw. China, Beijing, China, Oct. 2006
    [10] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241, Jul. 2008.
    [11] Chih-Heng Tsai,” An Equalizer for Single-Carrier Block Transmission System Using Frequency-Domain Preprocessing Combined with Tree Search” Institute of Computer and Communication Engineering National Cheng Kung University Thesis for Master of Science, July 2013.
    [12] K. B. Petersen, M. S. Pedersen, “The Matrix Cookbook,” January 5, 2005.

    下載圖示 校內:立即公開
    校外:2023-08-01公開
    QR CODE