簡易檢索 / 詳目顯示

研究生: 江威儀
Chiang, Wei-Yi
論文名稱: 利用錫替換製作高穩定度低能隙平面異質接面鈣鈦礦太陽能電池之研究
Study of Stable Tin-substitution Low-Bandgap Perovskite Planar-Heterojunction Solar Cells
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 鈣鈦礦太陽能電池錫替換低能隙
外文關鍵詞: Perovskite solar cell, tin substitution, low band gap
相關次數: 點閱:66下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,為了減少鈣鈦礦主動層內重金屬鉛的使用量,以及增長光吸收波段,我們利用同族元素錫作為替代製作高效率鈣鈦礦太陽能電池。在不破壞鈣鈦礦ABX3 架構的情況下,依含錫比例 0.125、0.25、0.375、0.5 部分取代鉛,其能隙會隨著錫比例的增加而有紅移的現象,因此更有利於太陽能光譜的吸收。由於在前驅物加入錫元素將產生 Sn2+ 與 Sn4+ 離子,其中 Sn4+ 離子容易與氧結合,導致鈣鈦礦主動層成膜品質差、覆蓋率低,造成光電轉換效率的下降,但是經由實驗發現,含錫鈣鈦礦需要較高的形成溫度,提供鈣鈦礦結構更強的鍵結能,增加對環境水氧的抵抗能力,達到提升元件可靠度的效果。本研究中,我們先利用X光繞射與二次離子質譜確認錫鉛元素的替換,再藉由光吸收頻譜、表面粗糙度、載子傳輸能力、外部量子效率,來探討不同錫含量對鈣鈦礦主動層的影響。除此之外,我們透過改變前驅物溶液濃度與熱退火參數,並利用氮氣處理作兩階段退火來獲得最佳化的元件光電轉換效率。在本論文末,我們成功減少鈣鈦礦主動層內鉛含量的比例,同時保持良好的元件效率,12.5% 的錫替換擁有高達 10% 媲美純鉛鈣鈦礦的表現,而替換 37.5% 的錫也能保持 85% 以上純鉛鈣鈦礦的效率,對於未來製作多接面或對環境友善的鈣鈦礦太陽能電池,提供一條可行的道路。

    In this thesis, in order to reduce the usage of heavy metal lead in perovskite active layer and extend the absorption wave range to sunlight, we applied its group 14 congeners tin as replacement to produce high performance perovskite solar cells. We partially substituted lead with tin content of 12.5%, 25%, 37.5%, and 50% in the condition of retaining the perovskite ABX3 framework. The band gap of perovskite material showed the red shift property with increasing of tin content; therefore, it facilitates the absorption of solar spectrum. Since element tin was involved in the precursor solution, it would generate the ion Sn2+ and Sn4+ which is highly oxidized resulting in poor film formation and low coverage of perovskite active layer, eventually inducing the drop of device power conversion efficiency. However, the higher film formation temperature of tin content perovskite was confirmed based on our experiment, it created stronger bonding energy in perovskite structure enhancing the resistance against oxide and moisture, and finally promoted device stability. In this research, we adopted XRD and secondary ion mass spectroscopy measurement to identify the element lead and tin substitution, and we investigated the influence of different tin content on perovskite active layer by using absorption spectra, surface roughness, carrier transport characteristics, and external quantum efficiency. What’s more, we adjust the precursor solution concentration and thermal annealing parameters, besides applying nitrogen-spray two step annealing process to optimize the tin based perovskite device power conversion efficiency. In the end of this thesis, we successfully reduce the lead content in perovskite active layer while keeping quite good device efficiency. 12.5% tin substitution perovskite exhibits comparable performance to pure lead perovskite with up to 10% PCE, and 37.5% tin content perovskite performs over 85% of pure lead perovskite PCE. Tin based perovskite provides a practical way for tandem solar cells or environment friendly perovskite solar cells in the future.

    摘 要 I Abstract II 誌謝 IV Content V Table Captions VIII Figure Captions X Chapter 1 Introduction 1 1-1 Background 1 1-2 Perovskite 3 1-3 Motivation 5 1-4 Organization of Thesis 7 Chapter 2 Operation Principle 8 2-1 Solar Spectrum 8 2-2 Mechanism of Perovskite Solar Cell 9 2-3 Solar Cell Characteristics 11 2-3-1 Dark Current Characteristics 11 2-3-2 Open-Circuit Voltage (Voc) 12 2-3-3 Short-Circuit Current (Isc) 12 2-3-4 Fill Factor (FF) 13 2-3-5 Power Conversion Efficiency (PCE) 14 Chapter 3 Experiment 15 3-1 Device Structure 15 3-2 Process for Device Fabrication 18 3-3-1 Pre-Cleaning ITO Substrate 18 3-3-2 UV Ozone Treatment of ITO Surface 18 3-3-3 Fabrication of Hole Transport Layer 19 3-3-4 Fabrication of Active Layer 19 3-3-5 Fabrication of Passivation Layer 20 3-3-6 Fabrication of Electron Transport Layer 21 3-3-7 Fabrication of Hole Blocking Layer and Cathode 21 3-3 Measurements 22 3-4-1 Current-Voltage Measurement System 22 3-4-2 Scanning Electron Microscope 22 3-4-3 X-ray Diffraction 23 3-4-4 Secondary Ion Mass Spectroscopy 23 3-4-5 Absorption Spectrum 24 3-4-6 Atomic Force Microscope 24 3-4-7 Space Charge Limited Current 25 3-4-8 External Quantum Efficiency 26 Chapter 4 Results and Discussions 27 4-1 Variation of Precursor Concentration 27 4-2 Variation of Annealing Temperature 29 4-3 Variation of Device Fabrication and Process 33 4-3-1 Passivation Layer 33 4-3-2 SnF2 Additive 34 4-3-3 N2-spraying Delay Annealing 35 4-4 Analysis of Sn Substitution 37 4-4-1 Scanning Electron Microscope 37 4-4-2 X-ray Diffraction 37 4-4-3 Secondary Ion Mass Spectroscopy 38 4-4-4 Absorption Spectra 40 4-4-5 Atomic Force Microscope 41 4-4-6 Space Charge Limited Current 42 4-4-7 External Quantum Efficiency 44 4-5 Achievement of Sn-Pb Binary Perovskite 45 4-6 Stability 47 Chapter 5 Conclusion 49 References 50

    [1] https://www.nrel.gov/pv/assets/images/efficiency-chart.png
    [2] H. J. Snaith , Adv. Funct. Mater. 2010, 20, 13-19.
    [3] T. Kirchartz , K. Taretto , U. Rau , J. Phys. Chem. C, 2009, 113, 17958-17966 .
    [4] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050–6051.
    [5] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Sci. Rep., 2012, 2, 591.
    [6] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature, 2013, 499, 316–319.
    [7] M. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics, 2014, 8, 506−514.
    [8] D. B. Mitzi, Inorg. Chem., 2000, 39, 6107–6113.
    [9] D. B. Mitzi, J. Chem. Soc., Dalton Trans., 2001, 1–12.
    [10] W.-J. Yin, T. Shi and Y. Yan, Adv. Mater., 2014, 26, 4653–4658.
    [11] H. J. Snaith and M. Gratzel, Adv. Mater., 2007, 19, 3643–3647.
    [12] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett., 2013, 13, 1764−1769.
    [13] M. M. Lee , J. Teuscher , T. Miyasaka , T. N. Murakami , H. J. Snaith , Science, 2012 , 338 , 643-647.
    [14] L. Etgar , P. Gao , Z. Xue , Q. Peng , A. K. Chandiran , B. Liu , M. K. Nazeeruddin , M. Grätzel , J. Am. Chem. Soc., 2012 , 134 , 17396-17399 .
    [15] J. Mats, L. Peter, J. Phys.: Condens. Matter, 2008, 20, 264001.
    [16] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, S. I. Seok, Nat. Photonics, 2013, 7, 487-491.
    [17] I. Borriello, G. Cantele, D. Ninno, Phys. Rev. B, 2008, 77, 235214.
    [18] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics, 2014, 8, 489–494.
    [19] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Sol. Energy Mater. Sol. Cells, 2006, 90, 2952-2959.
    [20] S. Meas. Donati, Sci. Technol., 2001, 12, 653.
    [21] A. Mancini, P. Quadrelli, C. Milanese, M. Patrini, G. Guizzetti, L. Malavasi, Inorg. Chem. 2015, 54, 8893-8895.
    [22] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, , N. Fujikawa Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, S. Hayase, J. Phys. Chem. Lett. 2014, 5, 1004-1011.
    [23] B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 2015, 6, 1543-1547.
    [24] D. Fabini, J. Phys. Chem. Lett. 2015, 6, 3546-3548.
    [25] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 3061-3068.
    [26] F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094−8099.
    [27] R. Milo, R. Phillips, Garland Science, 2014, p.216.
    [28] J. Jeong, Photovoltaic: measuring the sun, Laser Focus World website, 2009.
    [29] H. S. Jung, N. G. Park, small 2015, 11, 1, 10–25.
    [30] Z. H. Kafafi, R. J. Martín-Palm, A. F. Nogueira, D. M. O’Carroll, J. J. Pietron, I. D. W. Samuel, F. So, N. Tansu, L. Tsakalakosh, Journal of Photonics for Energy, 2015, 5, 050997.
    [31] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science, 2013 , 342 , 341-343.
    [32] H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G.Park , J. Bisquert, Nat. Commun., 2013 , 4 , 2242 .
    [33] H. Kim, K.-G. Lim, T.-W. Lee, Energy Environ. Sci., 2016, 9, 12-30
    [34] A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. Krol, T. Moehl, M. Gratzel, J.-E. Moser. Nature Photon., 2014, 8, 250–255.
    [35] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Nat. Photonics, 2015, 9, 106–112.
    [36] M. A. Green, A. H. Baillie, H. J. Snaith, Nat. Photonics, 2014, 8, 506-514.
    [37] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett., 2004, 84, 3013.
    [38] V. D. Mihailetchi, P. W. M. Mlom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys., 2003, 94, 6849.
    [39] S. M. Sze, Semiconductor devices: physics and technology-2nd ed, John Wiley and Sons, 1985.
    [40] T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata, and K. Ebihara, Sol. Energy Mater. Sol. Cells, 2001, 67, 389-395.
    [41] Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, Y. Li, ACS Appl. Mater. Interfaces, 2013, 5, 10658-10664.
    [42] K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, Adv. Mater., 2007, 19, 441-444.
    [43] B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, J. Manca ,H.-Gerd Boyen, Adv. Mater., 2013, 26, 2041–2046.
    [44] A. A. Gorshelev, A. V. Naumov, I. Y. Eremchev, Y. G. Vainer, L. Kador, and J. Köhler, ChemPhysChem, 2010, 11, 182-187.
    [45] K. Furukawa, Y. Terasak, H. Ueda, and M. Matsumura, Synth. Met., 1997, 91, 99-101.
    [46] T. Kawai, Y. Maekawa, and M. Kusabiraki, Surf. Sci., 2007, 601, 5276-5279.
    [47] J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A, vol. 3, pp. 1027-1034, 1985.
    [48] Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, and Z. H. Lu, J. Appl. Phys., 2010, 107, 034506.
    [49] M. A. Lampert and P. Mark, Current injection in solids, Academic Press: New York, 1970.
    [50] Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, J. Mater. Chem., 2008, 18, 2650-2652.
    [51] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im, Energy Environ. Sci., 2015, 8, 1602-1608.
    [52] L. Zhu, J. Shi, S. Lv, Y. Yang, X. Xu, Y. Xu, J. Xiao, H. Wu, Y. Luo, D. Lin, Q. Mengn, Nano. Energy, 2015, 15, 540-548.
    [53] G.R. Berdiyorov , M.E. Madjet , F. El-Mellouhi, F.M. Peeters, Solar Energy Materials & Solar Cells, 2016, 148, 60–66.
    [54] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, Adv. Funct. Mater. 2014, 24, 151–157.
    [55] A. Dualeh, N. T´etreault, T. Moehl, P. Gao, M. K. Nazeeruddin and M. Gratzel, Adv. Funct. Mater., 2014, 24, 3250–3258.
    [56] F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 11445−11452.
    [57] C.-M. Tsai, i-Ping Wu, S.-T. Chang, C.-F. Huang, C.-H. Wang, S. Narra, Y.-W. Yang, C.-L. Wang, C.-H. Hung, Eric W.-G. Diau, ACS Energy Lett. 2016, 1, 1086−1093.
    [58] M. H. Kumar, S. Dharani, W. L. Leong , P. P. Boix , R. R. Prabhakar, T. Baikie , C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Adv. Mater. 2014, 26, 7122–7127.
    [59] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13 , 897.
    [60] G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T.-W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, A. Palmstrom, D. J. Slotcavage, R. A. Belisle, J. B. Patel, E. S. Parrott, R. J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.-G. Boyen, S. Bent, F. Giustino, L. M. Herz, M. B. Johnston, M. D. McGehee, H. J. Snaith, Science, 2016, 354, 6314, 861-865.
    [61] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem., 2013 , 52 , 9019.
    [62] L. Zhu, B. Yuh, S. Schoen, X. Li, M. Aldighaithir, B. J. Richardson, A. A. Qiuming Yu, Nanoscale, 2016, 8, 7621–7630.
    [63] H. L. Zhu, J. Xiao, J. Mao, H. Zhang, Y. Zhao, Wallace C. H. Choy, Adv. Funct. Mater. 2017, 27, 1605469
    [64] Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, Tarak N. Mandal , Choong-Sun Lim , Jeong Ah Chang, Yong Hui Lee, Hi-jung Kim, Arpita Sarkar, Md. K. Nazeeruddin, Michael Gratzel and Sang Il Seok, Nat. Photonics 2013;7: 486–91.
    [65] Brijesh Tripathi, Parth Bhatt, Chandra Kanth P., Pankaj Yadav , Bhakti Desai , Manoj Kumar Pandey, Manoj Kumar, Solar Energy Materials & Solar Cells 132 (2015) 615–622
    [66] Zhibin Yang, Adharsh Rajagopal, Chu-Chen Chueh, Sae Byeok Jo, Bo Liu , Ting Zhao, and Alex K.-Y. Jen, Adv. Mater. 2016, 28, 8990–8997

    下載圖示 校內:2020-07-26公開
    校外:2020-07-26公開
    QR CODE