簡易檢索 / 詳目顯示

研究生: 吳宗銘
Wu, Chung-Ming
論文名稱: 利用正規概念分析法發現組織知識流障礙
Discovering the barriers of knowledge flow through formal concept analysis
指導教授: 林清河
Lin, Chinho
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 100
中文關鍵詞: 正規概念分析法知識流知識管理
外文關鍵詞: formal concept analysis (FCA), knowledge flow, knowledge management (KM)
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究從知識分享與知識整合的觀點,探索知識流的障礙,並利用概念圖呈現各障礙因子在知識流上的知識結構與因果關係,進而幫助改善知識管理的績效。本研究使用概念圖做為研究方法,主要目的是將半結構式資料或文字稿資料,轉換成結構式的資訊,更進一步地,利用圖形化介面將概念清楚地呈現,並從中找出有價值的管理意涵。本研究採用正規概念分析法(Formal Concept Analysis, FCA)做為概念圖的工具,利用FCA分析訪談逐字稿並結合知識階層圖(Knowledge Hierarchy)圖形化地呈現訪談逐字稿的概念,更進一步利用FCA找出各障礙因子的因果關係(Association Rule),再利用Knowledge Structure Map全面地呈現所有障礙因子的因果關係。有別於以往知識流方面的研究,本研究不只提出知識流的障礙因子,並且藉由Knowledge Hierarchy和Knowledge Structure Map以動態的觀點,更全面性、清楚地表達組織知識傳遞的活動,進而改善知識傳遞的障礙因子,提升組織知識管理的績效。
    此外,本研究發現FCA的確可以適當地呈現文字稿的概念並且準確地分析出概念中各因子之間的關係。結合FCA與質性研究,FCA可以協助質性研究者更全面性地考量整個研究,並且系統性而非主觀地提出有價值的研究命題,進而消除一些質性研究原本難以避免的人為誤差,改善研究品質。

    This research aims to use concept mapping to discover barriers which would influence the performance of knowledge management, from the perspective of knowledge sharing and integration. The major feature of concept mapping is to transform the semi-structured or term-rich contexts to be a structured and systematic map for easy understanding and (or) focusing on; furthermore, it could help to present the visualized contexts with an essential concept, and mine the potential implication behind. Comparison with the nature of knowledge itself and knowledge flow, both of them are involved in sense making and contextual issues, thus here we adopt one of the tools for mapping the concepts - Formal Concept Analysis (FCA) to present the barriers of knowledge flow which could be considered as the influencing factors of knowledge management, to explore and generate the association rule which is general or specific for reasoning the relationship between them. In this study, we not only combined the context and content analysis but also confirm with support of FCA to redeem the deficiencies of qualitative research that are argued by academy and practice.
    Furthermore, FCA supplies a suitable method for combining with qualitative research to comprehensively observe the situation and propose meaningful propositions systemically and objectively from semi-structured data. Furthermore, we can explore valuable implications from these propositions.

    Abstract------------------------------------------------iii 中文摘要------------------------------------------------iv 誌 謝---------------------------------------------------v LIST OF FIGURE------------------------------------------ix LIST OF TABLE-------------------------------------------x LIST OF BOX---------------------------------------------xi Chapter 1 INTRODUCTION-----------------------------------1 1.1 Research Background & Motivation---------------1 1.2 Research Purpose-------------------------------4 1.3 Research Model---------------------------------5 1.4 Organization of the Dissertation---------------7 Chapter 2 Literature Review------------------------------8 2.1 Knowledge Management---------------------------8 2.2 Knowledge Flow---------------------------------9 2.3 Determinants and barriers of knowledge flow----9 2.3.1 Characteristics of knowledge-------------------11 2.3.2 Knowledge provider-----------------------------12 2.3.3 Knowledge receiver-----------------------------12 2.3.4 Contextual factor------------------------------13 2.3.5 Inadequate/Lack of mechanisms------------------16 2.4 The Methods of Information Retrieval-----------19 2.4.1 Vector Space Models (VSM)----------------------19 2.4.2 Latent Semantic Indexing (LSI)-----------------20 2.4.3 Formal Concept Analysis (FCA)------------------20 2.4.4 Method Selection-------------------------------21 2.5 Formal Concept Analysis------------------------21 2.5.1 Introduction of Formal Concept Analysis--------21 2.5.2 Theorem of Formal Concept Analysis-------------22 2.5.3 The Concepts of a Context----------------------25 2.5.4 How to Read the Concept Lattice----------------27 2.5.5 Duquenne-Guigues Base (Stem Base)--------------29 2.5.6 Relational Research of FCA---------------------31 2.6 Knowledge Map----------------------------------33 2.6.1 Knowledge Structure Map------------------------35 2.6.2 Relational Research of Knowledge maps----------36 Chapter 3 Research Methodology---------------------------38 3.1 Research Framework-----------------------------38 3.2 Research Design--------------------------------42 3.2.1 Explore The Barries And in-depth Interview With The Experts------------------------------------42 3.2.2 Modulate The Transcripts With These Barriers---43 3.2.3 Generate Casual Relationships Through FCA------44 3.2.4 Produce The Formal Context---------------------45 3.2.5 Generate Concept Lattices----------------------46 3.2.6 Construct The Knowledge Hierarchy--------------47 3.2.7 Discovery The Implications (Association Rules) -----------------------------------------------49 Chapter 4 Result and Proof-------------------------------52 4.1 Result-----------------------------------------52 4.1.1 Knowledge hierarchy----------------------------52 4.1.1.1 Dimension of Knowledge Hierarchy (Knowledge Characteristics)-------------------------------52 4.1.1.2 Dimension of Knowledge Hierarchy (Knowledge Provider)--------------------------------------53 4.1.1.3 Dimension of Knowledge Hierarchy (Knowledge Receiver)--------------------------------------54 4.1.1.4 Dimension of Knowledge Hierarchy (Contextual Factor)----------------------------------------55 4.1.1.5 Dimension of Knowledge Hierarchy (Mechanism)---57 4.1.2 Implications And Knowledge Structure Map-------58 4.2 Proof------------------------------------------61 4.2.1 Questionnaire Design---------------------------63 4.2.2 Pilot Test-------------------------------------63 4.2.3 Data Collection--------------------------------64 4.2.4 Data Analysis----------------------------------65 4.2.4.1 Descriptive Statistics-------------------------65 4.2.4.2 Reliability Analysis---------------------------68 4.2.4.3 Validity Analysis------------------------------69 4.2.4.3.1 Content Validity-------------------------------69 4.2.4.3.2 Criterion-Related Validity---------------------69 4.2.4.3.3 Construct Validity-----------------------------71 4.2.4.4 Data Check-------------------------------------72 4.2.4.5 One Sample t-test------------------------------72 Chapter 5 Discussion & Conclusion------------------------75 5.1. Discussion-------------------------------------75 5.1.1 The Innovation of FCA For Combining With Qualitative Research---------------------------75 5.1.2 Managerial Implications------------------------78 5.1.2.1 Human Behaviors & Knowledge Characteristics----80 5.1.2.2 Organization-----------------------------------82 5.1.2.3 Information Technology-------------------------84 5.1.2.4 Culture----------------------------------------85 5.2. Conclusion-------------------------------------86 5.3. Research Limitation----------------------------87 5.4. Future Work------------------------------------88 References----------------------------------------------90 Appendix I----------------------------------------------99

    Abernethy, M. A., Horne, M., Lillis, A. M., Malina, M. A., & Selto, F. H. (2005). A multi-method approach to building causal performance maps from expert knowledge. Management Accounting Research, 16(2), 135-155.

    Agrawal, R., Imielinsky, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Proceedings of the 1993 International Conference on Management of Data (SIGMOD 93), 207 - 216.

    Ahn, H. J., Lee, H. J., Cho, K., & Park, S. J. (2005). Utilizing knowledge context in virtual collaborative work. Decision Support Systems, 39(4), 563-582.

    Andersen, A., & APQC (1995). The Knowledge-Management Assessment Tool. Knowledge Imperative Symposium. Houston.

    Andrews, K. M., & Delahaye, B. L. (2000). Influences on knowledge processes in organizational learning: the psychological filter. Journal of Management Studies, 37(6), 797-810.

    Augier, M., Shariq, S. Z., & Vendelø, M. T. (2001). Understanding context: its emergence, transformation and role in tacit knowledge sharing. Journal of Knowledge Management, 5(2), 125-136.

    Benbya, H., Passiante, G., & Belbaly, N. A. (2004). Corporate portal: a tool for knowledge management synchronization. International Journal of Information Management, 24(3), 201-220.

    Bock, G. W., & Kim, Y. (2002). Breaking the myths of rewards: An exploratory study of attitudes about knowledge sharing. Information Resources Management Journal, 15(2), 14-21.

    Brown, R. B., & Woodland, M. J. (1999). Managing knowledge wisely: A case study in organizational behavior. Journal of Applied Management Studies, 8(2), 175-198.

    Carra, S. C., & MacLachlan, M. (2005). Knowledge Flow and Capacity Development: An Introduction to the Special Issue. Higher Education Policy, 18, 199-205.

    Choi, B., & Lee, H. (2003). An empirical investigation of KM styles and their effect on corporate performance. Information & Management, 40, 15.

    Chung, W., Chen, H., & Nunamaker Jr., J. F. (2005). A Visual Framework for Knowledge Discovery on the Web: An Empirical Study of Business Intelligence Exploration. Journal of Management Information Systems, 21(4), 57 - 84.

    Cimiano, P., Stymme, G., Hotho, A., & Tane, J. (2004). Conceptual knowledge processing with formal concept analysis and ontologies. The Second International Conference on Formal Concept Analysis. Sydney, 189 - 207.

    Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128-152.

    Corsoa, M., Martini, A., Pellegrini, L., Massa, S., & Testa, S. (2006). Managing dispersed workers: The new challenge in knowledge management. Technovation, 26(5-6), 583-594.

    Díaz-Agudo, B., & González-Calero, P. A. (2001). Formal concept analysis as a support technique for CBR. Knowledge-Based Systems, 14(3-4), 163 - 171.

    Davenport, T. H., & Prusak, L. (1998). Working Knowledge: How organization Manage what they know. Boston: Harvard Business School Press.

    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3).

    De Long, D. W., & Fahey, L. (2000). Diagnosing culture barriers to knowledge management. The Academy of Management Executive, 14(4), 113-127.

    Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic indexing. Journal of the American Society for Information Science, 41(6), 391 - 410.

    Desouza, K. C. (2003). Strategic contributions of game rooms to knowledge management: Some preliminary insights. Information & Management, 41(1), 63-74.

    Detmer, W. M., & Shotliffe, E. H. (1997). Using the internet to improve knowledge diffusion in medicine. Communications of the ACM, 40(8), 101-108.

    Dixon, N. (2002). The neglected receiver of knowledge sharing. Ivey Business Journal, 66(4), 35-40.

    Doz, Y., Santos, J., & Williamson, P. (2001). From Global to Metanational: How Companies Win in the Knowledge Economy. Boston: Harvard Business School Press.

    Drucker, P. F. (1994). Post-capitalist society: Harperbusiness.

    Eppler, M. J. (2001). Making Knowledge Visible Through Intranet Knowledge Maps: Concepts, Elements, Case. Proceedings of the 34th Hawaii International Confernece on System Sciences.

    Eppler, M. J., & Mengis, J. (2004). The concept of information overload: A review of literatures from organization science, accounting, marketing, MIS, and related disciplines. The Information Society, 20(5), 325 - 344.

    Formica, A. (2006). Ontology-based concept similarity in Formal Concept Analysis. Information Sciences, 176(18), 2624 - 2641.

    Ganter, B., & Wille, R. (1999). Formal Concept Analysis, Mathematical Foundations (Paperback ed.). Berlin: Springer Verlag

    Glomseth, R., Gottschalk, P., & Solli-Sæther, H. (2007). Occupational culture as determinant of knowledge sharing and performance in police investgations. International Journal of the Sociology of Law 35(2), 96 - 107.

    Godin, R., Missaoui, R., & Alaoui, H. (1995). Incremental concept formation algorithms based on Galois (concept) lattices. Appeared in Computational Intelligence, 11(2), 246-267.

    Golub, G. H., & Loan, C. F. V. (1989). Matrix computations (2nd ed.): Johns Hopkins Univ. Press.

    Gonz lea, O., Lakdawala, V., Leathrum Jr., J., & Zahorian, S. (2001). Knowledge Maps for Intelligent Questioning Systems in Engineering Education. Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition. Albuquerque.

    Guigues, J. L., & Duquenne, V. (1986). Familles minimales d’implications informatives resultant d'un tableau de donnees binaires. Math. Sci. hum., 24(95), 14.

    Holsapple, C. W., & Joshi, K. D. (2002). A collaborative approach to ontology design. Communications of The ACM, 45(2), 42 - 47.

    Husted, K., & Michailova, S. (2002). Knowledge sharing in Russian companies with western participation. International Management 6(2), 17-28.

    Hutchins, E. (1995). Cognition in the Wild. Cambridge: MIT Press.

    Huynh, V. N., NaKamori, Y., Ho, T. B., & Resconi, G. (2004). A context model for fuzzy concept analysis based upon model logic. Information Sciences, 160(1-4), 111 - 129.

    Irani, Z., Sharif, A. M., & Love, P. E. D. (2007). Knowledge mapping for information systems evaluation in manufacturing. International Journal of Production Research, 45(11), 23.

    Jain, K. K., Sandu, M. S., & Sidu, G. K. (2006). Identifying and overcoming barriers to sharing. Knowledge Management Review, 9(4), 6-7.

    Ju, T. L., Li, C.-Y., & Lee, T.-S. (2006). A contingency model for knowledge management capability and innovation. Industrial Management & Data Systems, 106(6), 855 - 877.

    Kangassalo, H. (1992). On the concept of concept for conceptual modeling and concept deduction. Amsterdam: IOS Press.

    Katz, R., & Allen, T. J. (1982). Investigating the not invented here (NIH) syndrome: a look at the performance, tenure and communication patterns of 50 R&D projects groups. R&D Management, 12(1), 7-19.

    Kim, S., & Lee, H. (2005). Employee knowledge sharing capabilities in public and private organizations: Does organizational context matter. Proceedings of the Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS’05), 249a.

    Kim, S., Suh, E., & Hwang, H. (2003). Building the knowledge map: An industrial case study. Journal of Knowledge Management, 7(2), 34 - 45.

    Koskinen, K. U. (2005). Metaphoric boundary objects as co-ordinating mechanisms in the knowledge sharing of innovation processes. European Journal of Innovation Management, 8(3), 323-335.

    KPMG (1998). Knowledge Management Research Report.

    Kuznetsov, S. O. (2004). On the intractability of computing the Duquenne-Guigues base. Journal of Universal Computer Science, 10(8), 927 - 933.

    Kwok, S. H., & Gao, S. (2005). Attitude towards knowledge sharing behavior. Journal of Computer Information Systems, 46(2), 45-51.

    Lai, L. F. (2007). A knowledge engineering approach to knowledge management. Information Sciences, 177(19), 4072-4094.

    Lakhal, L., & Stumme, G. (2005). Efficient mining of association rules based on formal concept analysis: Spinger.

    Liao, S.-h. (2003). Knowledge management technologies and applications - literature review from 1995 to 2002. Expert Systems with Applications, 25(2), 155-164.

    Lin, C., Tan, B., & Chang, S. (2008). An Exploratory Model of Knowledge Flow Barriers within Healthcare Organizations. Information & Management.

    Lin, F.-r., & Hsueh, C.-m. (2003). Knowledge Map Creation and Maintenance for Virtual Communities of Practice. Proceedings of the 36th Hawaii International Conference on System Sciences, 10.

    Mann, K. V. (2002). Thinking about learning: implications for principle-based professional education. The Journal of Continuing Education in Health Professions, 22(2), 69-76.

    McBriar, I., Smith, C., Bain, G., Unsworth, P., Magraw, S., & Gordon, J. L. (2003). Risk, gap and strength: key concepts in knowledge management. Knowledge-Based Systems, 16(1), 29-36.

    Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. The Psychological Review, 63, 17.

    Ndlela, L. T., & du Toit, A. S. A. (2001). Establishing a knowledge management programme for competitive advantage in an enterprise. International Journal of Information Management, 21(2), 151-165.

    Nonaka, I. (1991). The knowledge creating company. Harvard Business Review, 69(Nov-Dec).

    Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organization Science, 5(1), 14-37.

    Nonaka, I., & Konno, N. (1998). The concept of 'Ba': Building foundation for knowledge creation. California Management Review, 40(3), 40-54.

    Nonaka, I., & Takeuchi, H. (1995). The Knowledge Creating Company: How Japanese Create the Dynamics of Innovation. New York: Oxford University Press.

    Nunnally, J. C. (1978). Psychometric Theory. New York: McGraw-Hill.

    O'Dell, C., & Grayson, C. J. (2004). Indetifying and Transferring Internal Best Practices: Holsapple Clyde W.

    Paivio, A. (1990). Mental Representations: A Dual Coding Approach. New York: Oxford University Press.

    Paivio, A. (1991). Dual coding theory: retrospect and current status. Canadian Journal of Psychology, 45(3), 33.

    Pettigrew, A. M. (1997). What is a processual analysis? Scandinavian Journal of Management, 13(4), 337-348.

    Pike, W., & Gahegan, M. (2007). Beyond ontologies: Toward situated representations of scientific knowledge. International Journal of Human-Computer Studies, 65(7), 674-688.

    Priss, U. (2006). Formal concept analysis in information science. Annual review of information science and technology, 40(1), 521-543.

    Raghu, T. S., & Vinze, A. (2007). A business process context for knowledge management. Decision Support Systems, 43(3), 1062-1079.

    Ricardo, B.-Y., & Berthier, R.-N. (1999). Modern Information Retrieval: Addison Wesley Longman.

    Riege, A. (2005). Three-dozen knowledge-sharing barriers managers must consider. Journal of Knowledge Management, 9(3), 18-35.

    Ruddy, T. (2000). Taking knowledge from heads and putting it into hands. Knowledge and Process Management, 7(1), 37-40.

    Sabherwal, R., & Becerra-Fernandez, I. (2005). Integrating specific knowledge: Insights from the Kennedy Space Center. IEEE Transactions on Engineering Management, 52(3), 301-315.

    Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613 - 620.

    Saquer, J., & Deogun, J. S. (2001). Concept approximations based on Rough Sets and similarity measures. International Journal of Applied Mathematics and Computer Science, 11(3), 655-674.

    Schulz, M., & Jobe, L. A. (2001). Codification and tacitness as knowledge management strategies: An empirical research. Journal of High Technology Management Research, 12(1), 27.

    Senge, P. M. (1990). The Fifth Discipline: The Art & Practice of The Learning Organization. New York: Currency Doubleday.

    Shin, M. (2004). A framework for evaluatingeconomics of knowledge management systems. Information & Management, 42(1), 179 - 196.

    Shin, M., Holden, T., & Schumit, R. A. (2001). From knowledge theory to management practice: towards an integrated approach. Information Processing and Management, 37(2), 335-355.

    Siau, K., & Wang, Y. (2007). Cognitive evaluation of information modeling methods. Information and Software Technology, 49(5), 455–474.

    Szulanski, G. (1996). Exploring internal stickiness: Impediments to the transfer of best practice within the firm. Strategic Management Journal, 17(Winter Special), 27-43.

    Tho, Q. T., Hui, S. C., Fong, A. C. M., & Cao, T. H. (2006). Automatic fuzzy ontology generation for semantic web. IEEE Transactions on knowledge and data engineering, 18(6), 842 - 856.

    Vail, E. F. (1999). Mapping organizational knowledge. Knowledge Management Review, 8, 10-15.

    Watson, R. (1999). Data management: databases and organizations. New York: John Wiley.

    Weiss, L. (1999). Collection and connection: the anatomy of knowledge sharing in professional service firms. Organization Development Journal, 17(4), 61-77.

    Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts. Dordrecht-Boston: Reidel.

    Wille, R. (1992). Conceptual latices and conceptual knowledge systems. Computers and Mathematics with Applications, 23(6 - 9), 493 - 515.

    Witten, I. H., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques (Second ed.). San Francisco: Morgan Kaufmann.

    Wolff, K. E. (1993). A first course in formal concept analysis - how to understand line diagrams: Gustav Fischer Verlag.

    Wu, W.-W., & Lee, Y.-T. (2007). Selecting knowledge management strategies by using the analytic network process. Expert Systems with Applications, 32(3), 841 - 847.

    Zander, U., & Kogut, B. (1995). Knowledge and the speed of transfer and imitation of organizational capabilities: An empirical test. Organization Science, 6(1), 76-92.

    Zhang, G.-Q., Shen, G., Tian, Y., & Sun, J. (2006). Concept analysis as a formal method for menu design: Springer Berlin / Heidelberg.

    Zhang, J., Dawes, S. S., & Sarkis, J. (2005). Exploring stakeholders' expectations of the benefits and barriers of e-government knowledge sharing. Journal of Enterprise Information Management, 18(5), 548-567.

    Zhuge, H. (2002). A knowledge flow model for peer-to-peer team knowledge sharing and management. Expert Systems with Applications, 23(1), 23-30.

    Zhuge, H. (2006). Knowledge flow network planning and simulation. Decision Support Systems, 42(2), 571-592.

    Zins, C. (2007). Knowledge Map of Information Science. Journal of the American Society for Information Science and Technology, 58(4), 526 - 535.

    無法下載圖示 校內:2013-06-20公開
    校外:2108-06-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE