| 研究生: |
翁翠璜 Weng, Tsui-Huang |
|---|---|
| 論文名稱: |
新型主動式柔切暨升壓緩震器應用於高升壓直流-直流轉換電路 A Novel Step-Up Active Soft-Switching Snubber for High Voltage Gain DC-DC Converter Applications |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 耦合電感升壓電路 、高升壓 、零逆向回復電流 、柔切 、緩震電路 |
| 外文關鍵詞: | coupled-inductor boost converter, high step-up, no reverse recovery current, snubber |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出在傳統的耦合電感升壓電路架構中,加入一新型主動式柔切暨升壓緩震器,結合諧振的技術以達到柔切效果,且可藉由調整緩震器變壓器匝比以達到額外的升壓效果,也使輔助開關達到零電流導通及截止時達到電壓箝位的功能。所提輔助緩震器能讓所有開關電流於切換時等於或接近於零,以及電路中的所有二極體因能達到自然截止,而不會產生逆向回復電流的問題。所使用之諧振技術不僅抑制所有開關的切換損失且回收漏感能量,以升壓至輸出端。本電路架構可選擇較小電壓應力之功率開關以期具較低的導通損失。相較於傳統的耦合電感的升壓電路,本文提升電壓轉換比。本文透過PSIM模擬及電路實作實現輸入電壓25~40V、輸出電壓400V且額定為250W之電路架構,且透過模擬及實作結果驗證所提轉換器之理論與可行性。
In the traditional step-up boost converter with coupled inductor, a novel snubber design is proposed in this thesis to have additional step-up gain via different turns ratios and SS functions via resonant technique. Not only can main switch have the ZVS function, but also auxiliary switch is turned on under ZCS condition and turned off with voltage clamped. Therefore, the proposed snubber can achieve the current through or voltage across the power devices to be equal to or near zero during switching time, and there are no reverse recovery current within all the diodes, which achieve ZCS turn-off condition in proposed topology. Moreover, by using resonant technique in proposed topology, not only switching losses can be reduced on the power switches, which can select low-voltage low-conduction-loss power devices, but also the leakage energy can be recycled to step-up to the output terminal. Thus, the proposed topology can promote the voltage gain compared with the conventional coupled-inductor boost converter. Via PSIM simulations and experiments, a 250W, 30V input-voltage and 400V output-voltage prototype is implemented and verified effectiveness of the proposed converter in the thesis.
[1] W. Li and X. He, "Review of non-Isolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected applications," IEEE Trans. on Ind. Electron., vol. 58, no. 4, pp. 1239-1250, Apr. 2011.
[2] Y. Zhao, W. Li and X. He, "Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell," IEEE Trans. on Power Electron., vol. 27, no. 6, p. 28692878, Jun. 2012.
[3] C.-M. Young, M.-H. Chen, T.-A. Chang, C.-C. Ko and K.-K. Jen, "Cascade Cockcroft-Walton Voltage Multiplier Applied to Transformerless High Step-Up DC–DC Converter," Ind. Electron., vol. 60, no. 2, pp. 523-537, 2013.
[4] H.-X. Lee, "Implementation of Maximum Power Point Tracker with Soft Switching," NCCU, 2009.
[5] S. J. Finney, B. W. Williams and T. C. Green, "RCD Snubber Revisited," IEEE Trans. on Ind. Electron., vol. 32, no. 1, pp. 155-160, 1996.
[6] R. T. H. Li, H. S.-H. Chung and A. K. T. Sung, "Passive Lossless Snubber for Boost PFC With Minimum Voltage and Current Stress," IEEE Trans. on Power Electron., vol. 25, no. 3, pp. 602-613, Mar. 2010.
[7] H.-S. Kim, J. W. Baek, J. H. Jung, J. H. Kim, M. H. Ryu and H. J. Kim, "A Boost PFC Rectifier with a Passive Lossless Snubber Circuit Using Coupled Inductors Methods," in Proc. APEC, pp. 1148 - 1152, Feb. 2012.
[8] G. Hua, C. S. Leu, Y. Jiang and C. Y. Lee, "Novel Zero-Voltage-Transition PWM Converters," IEEE Trans. on Power Electron., vol. 9, no. 2, pp. 213-219, Mar. 1994.
[9] S. H. Park, S. R. Park, J. S. Yu, Y. C. Jung and C. Y. Won, "Analysis and Design of a Soft-Switching Boost Converter with an HI-Bridge Auxiliary Resonant Circuit," IEEE Trans. on Power Electron., vol. 25, no. 8, pp. 2142-2149, Aug. 2010.
[10] Moschopoulos and P. D. a. Gerry, "A Comparative Study of Zero-Current-Transition PWM Converters," IEEE Trans. on Ind. Electron., vol. 54, no. 3, pp. 1319-1328, Jun. 2007.
[11] T.-F. Wu, Y.-D. Chang, C.-H. Chang and J.-G. Yang, "Soft-Switching Boost Converter With a Flyback Snubber for High Power Applications," IEEE Trans. on Power Electron., vol. 27, no. 3, pp. 1108-1119, Mar. 2012.
[12] I. Aksoy, H. Bodur and A. F. Bakan, "A New ZVT-ZCT-PWM DC–DC Converter," IEEE Trans. on Power Electron., vol. 25, no. 8, pp. 2093-2005, Aug. 2010.
[13] B. Akın and H. Bodur, "A New Single-Phase Soft-Switching Power Factor Correction Converter," IEEE Trans. on Power Electron., vol. 26, no. 2, pp. 436-443, Feb. 2011.
[14] J. Bauman and M. Kazerani, "A Novel Capacitor-Switched Regenerative Snubber for DC/DC Boost Converters," IEEE Trans. on Ind. Electron., vol. 58, no. 2, pp. 514-523, Feb. 2011.
[15] S.-Y. Tseng, C.-L. Ou, S.-T. Peng and J.-D. Lee, "Interleaved Coupled-Inductor Boost Converter with Boost Type Snubber for PV System," ECCE 2009. IEEE, pp. 1860-1867, 2009.
[16] R.-J. Wai and C.-Y. Lin, "High-Efficiency, High-Step-Up DC–DC Convertor for Fuel-Cell Generation System," IEE Proc.-Electr. Power Appl, vol. 152, no. 5, pp. 1371-1378, Sep. 2005.
[17] B.-R. Lin, J.-Y. Dong and J.-J. Chen, "Analysis and Implementation of a Soft Switching Converter with High-Voltage Conversion Ratio," Proc. IET-Power Electron., vol. 1, no. 3, pp. 386-394, Sep. 2008.
[18] T.-F. Wu, Y.-S. Lai, J.-C. Hung and Y.-M. Chen, "Boost Converter with Coupled Inductors and Buck–Boost Type of Active Clamp," IEEE Trans. on Ind. Electron., vol. 55, no. 1, pp. 154-162, Jan. 2008.
[19] H.-W. Seong, H.-S. Kim, K.-B. Park, G.-W. Moon and M.-J. Youn, "High Step-Up DC-DC Converters Using Zero-Voltage Switching Boost Integration Technique and Light-Load Frequency Modulation Control," IEEE Trans. on Power Electron., vol. 27, no. 3, pp. 1383-1400, Mar. 2012.
[20] S. V. Araújo, R. P. Torrico-Bascopé and G. V. Torrico-Bascopé, "Highly Efficient High Step-Up Converter for Fuel-Cell Power Processing Based on Three-State Commutation Cell," IEEE Trans. on Ind. Electron., vol. 57, no. 6, pp. 1987-1997, Jun. 2010.
[21] H.-L. Do, "Soft-Switching SEPIC Converter With Ripple-Free Input Current," IEEE Trans. on Power Electron., vol. 27, no. 6, pp. 2879-2887, Jan. 2012.
[22] R.-J. Wai, C.-Y. Lin, R.-Y. Duan and Y.-R. Chang, "High-Efficiency DC-DC Converter With High Voltage Gain and Reduced Switch Stress," IEEE Trans. on Ind. Electron., vol. 54, no. 1, pp. 354-364, Feb. 2007.
[23] S.-M. (Orion) Chen, T.-J. (Peter) Liang and K.-R. Hu, "Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System," IEEE Trans. on Power Electron., vol. 28, no. 4, pp. 1764-1772, Apr. 2013.
[24] Y.-P. Hsieh, J.-F. Chen, T.-J. (Peter) Liang and L.-S. Yang, "Novel High Step-Up DC–DC Converter with Coupled-Inductor and Switched-Capacitor Techniques for a Sustainable Energy System," IEEE Trans. on Power Electron., vol. 26, no. 12, pp. 3481-3490, Dec. 2011.
[25] C.-T. Pan and C.-M. Lai, "A High-Efficiency High Step-Up Converter With Low Switch Voltage Stress for Fuel-Cell System Applications," IEEE Trans. on Ind. Electron., vol. 57, no. 6, pp. 1998-2006, Jun. 2010.
[26] B.-R. Lin, J.-Y. Dong and J.-J. Chen, "Analysis and implementation of a ZVS/ZCS DC–DC switching converter with voltage step-up," IEEE Trans. on Ind. Electron., vol. 58, no. 7, pp. 2962-2971, 2011.
[27] 梁適安, 交換式電源供應器之理論與實務設計, 全華圖書股份有限公司, 民國97年, pp. 107-152.
[28] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, 2nd edition ed., New York: John Willey, 1995, pp. 96-98.
[29] "Microchip Technology Inc.," [Online]. Available: http://www.microchip.com.
[30] "EcoDue PM220P00," [Online]. Available: http://goo.gl/IwLd4N. [Accessed 15 07 2013].
[31] "datasheet for IXFH26N50Q," [Online]. Available: http://pdf1.alldatasheet.com/datasheet-pdf/view/93663/IXYS/IXFH26N50Q.html.
校內:2016-08-19公開