| 研究生: |
楊孟祥 Yang, Meng-Hsiang |
|---|---|
| 論文名稱: |
可攜式人體震顫長期監測系統之設計與震動確認用精密量測技術之研究 Design of a Portable Long-term Monitoring System for Human Tremor and Study of High Accurate Measurement Technique for Verifying the Vibration |
| 指導教授: |
楊明興
Young, Ming-Shing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 震動 、可攜式 、長期記錄器 、加速度計 、超音波 、人體震顫 |
| 外文關鍵詞: | long-term monitor, tremor, accelerometer, portable, vibration, ultrasonic |
| 相關次數: | 點閱:74 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體震顫是一種不自主運動,是肌肉群的同時或交替動作造成的結果,在臨床醫學上,最為大家所熟悉例子就是巴金森氏症。除了巴金森氏症外,還有其它的病症也會引起震顫。無論是何種病症所引起的震顫的症狀,或多或少都會造成病患生活上的不便,因此有必要研發一套量測與監測人體震顫的系統來幫助醫師診斷病情,以便給予病人更適當的治療,進而減輕其痛苦。本論文的主要目標就是建構一套能夠正確地量測與持續地監測人體震顫的完整系統,包括一套可攜式的長期監視測系統與一套高精確度超音波量測系統。
人體震顫可能在一天中的任何時間發生,所以短時間的量測可能造成資料的漏失,因此研製一套可攜式的長期監測系統是有需要的。我們已成功地發展出一套有USB界面的可攜式長期監視與分析系統,使用可擴充的compact flash memory card,能記錄24小時以上的資料。採用USB界面與電腦連接,除了可以隨插即用和快速傳輸資料,還可同時對長期監視器內的鋰電池進行充電。本系統有兩種模式:即時監視模式可以連接到電腦做系統校正和即時資料顯示;長期記錄模式可以將一天的活動資料儲存到compact flash memory card。當長期監視器連結到電腦時,在電腦上就會成為一個可抽取式硬碟,將硬碟開啟後就可進行後續的資料分析與處理,因此本系統對於人體震顫的研究和治療有很大的助益。
另外,為了要更進一步的確認震動量測的精準性,我們發展了一套使用BASK調變方法的高精確超音波量測系統,並發表了一個簡單且有效的演算法,由三個不同頻率信號所產生的相位差來計算出物體的震動位移。運用這種方法,我們可以擁有比相位差法更大的量測範圍,取得比時間差法更高的精確度。我們的系統包含兩個重要的部分,其中一部分是BASK調變信號產生器,另一部分是相位量測計。運用此相位量測計可以得到三個不同頻率信號的相位差,並可將結果傳送至液晶顯示模組或電腦做進一步的運算和校正,最後可以算出震動的位移,這套量測系統的優點就是高精確度,且可使用便宜、容易取得的窄頻寬感測器來完成。
Tremor is a kind of involuntary movement, which results from alternating or simultaneous contractions of muscle groups. Tremor is commonly happened on Parkinson Patients. Besides, tremor is also occurred on patients with other diseases. No matter what kind of tremors occurred on the patients, they always cause inconvenience to the patients during their 24 hour daily life. Therefore, it is necessary to develop a tremor measuring and monitoring system. It not only assists doctors to diagnose the diseases but also to apply more adequate medication. The purpose of this study is to develop a complete system for accurately measuring and continuously monitoring tremor. The system includes a long-term portable monitor system, and a high accurate ultrasonic measurement system.
Tremors, which occur anytime during the daily 24-hour cycle, may be missed if monitoring is performed only on a short-term basis. Improving this situation requires long-term ambulatory recording capability. Thus, for long-term and continuous tremor monitoring, this study presents a wrist-worn portable system that can save an entire 24-hour tremor waveform in an expansible compact flash memory card. With a rechargeable battery and USB interface, the system has two operation modes: 1) the monitoring mode- While connected to a host computer, it allows confirmation of system operation, calibration of accelerometers and immediate display of data on a PC screen; 2) the collecting mode- It can save data on the compact flash memory card within the device during daily activity. After collection, data are accessed to a host computer for processing. Analysis based on complete tremor waveform including tremor frequency and intensity of 24-hour data is expected to allow improved understanding and treatment of tremors.
Moreover, in order to verify the accuracy of the vibration measurement, we developed a high accurate Binary Amplitude-Shift-Keyed (BASK) modulated ultrasonic measurement system for use in isothermal air. In this paper, we present a simple but efficient algorithm based upon phase shifts generated by three ultrasonic waves of different frequencies. By the proposed method, we can conduct larger range measurement than the phase-shift method and also get higher accuracy compared with the time-of-flight (TOF) method. Our microcontroller-based system includes two important parts. One of which is BASK modulation signal generator. The other is a phase meter by which the phase shifts of the three different frequency signals are obtained. The results are sent either to an LCD module for display or a PC for calibration. Finally, the result of motion is then calculated. The main advantages of this ultrasonic measurement system are high resolution, narrow bandwidth requirement, low cost, and easily implemented.
1. R. J. Elbel and W. C. Koller, “Tremor,” Johns Hopkins University, Baltimore, 1990; 204.
2. C. D. Marsden, “Origins of normal and pathological tremor,” Movement disorders: Tremor, J. Findley and R. Capildeo, Eds. London, England: McMillan, 1984; 37-84.
3. R. R. Young, “Tremor,” Diseases of Nervous System. Clinical Neurobiology, A. K. Asbury, G. M. Mckhann., and W. I. McDonald, Eds. Philadelphia, PA: Saunders, 1986; 1: 435-451.
4. P. G. Bain, Movement Disorder, 1998; 13, 77.
5. E. J. W. Van Someren, W. A. van Gool, B. F. M. Vonk, M. Mirmiran, J. D. Speelman, D. A. Bosch, D. F. Swaab, “Ambulatory monitoring of tremor and other movements before and after thalamotomy: a new quantitative technique,” J. Neurol. Sci., 1993; 117, 16.
6. T. K. Cowell, C. D. Marsden, D. A. L. Owen, “Objective measurement of Parkinsonian tremor,” Lancet., 1965; 2, 1278.
7. J. J. Ackmann, A. Sances, S. J. Larson and J. B. Baker, “Quantitative evaluation of long-term Parkinson tremor,” IEEE Trans. on Biomed. Eng., 1977; 24(1), 49.
8. R. M. Pimlot, J. M. Gibson, I. T. Brown and C. Kennard, “A new ambulatory monitoring system for tremor,” Electroenceph. Clin. Neurophysiol., 1983; 56, 694.
9. E. Scholz, M. Bacher, H. C. Diener and J. Dichgans, “Twenty-four-hour tremor recordings in the evaluation of the treatment of Parkinson’s disease,” J. Neurol., 1988; 235, 475.
10. M. Bacher, E. Scholz and H. C. Diener, “24 Hour continuous tremor quantification based on EMG recording,” Electroenceph. Clin. Neurophysiol., 1989; 72, 176.
11. W. Gruen, “Chronophysiology and ambulatory monitoring instrumentation,” Chronobiol. Int., 1990; 7, 89
12. J. J. van Hilten, G. Hoogland, E. A. van der Velde, G. A. Kerkhof, J. G. Van Dijk and R. A. C. Roos, “Quantitative assessment of parkinsonian patients by continuous wrist activity monitoring,” Clin. Neuropharmacol., 1993; 16, 36.
13. W. W. Tryon, “Activity Measurement in Psychology and Medicine,” Plenum Press, New York, 1991; 247.
14. P. G. Bain, L. J. Findley, P. Atchison, et al., “Assessing tremor severity,” J. Neurol Neurosurg Psychiatry, 1993; 56, 868.
15. E. J. W. Van Someren, B. F. M. Vonk, W. A. Thijssen, J. D. Speelman, P. R. Schuuman, M. Mirmiran, D. F. Swaab, “A new actigraph for long-term registration of the duration and intensity of tremor and movement,” IEEE Tran. Biomed. Eng., 1998; 45, 386.
16. J-N. Juang, L. G. Horta and H. H. Robershaw, “A slewing control experiment for flexible structures,” J. Guidance and Control, 1986; 9: 5: 599-607.
17. J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 1986; 33: 485-499.
18. C. Claudio, C. D. Giorgio, M. Brouno, P. Maria, and T. Andrea, “A temperature compensated ultrasonic sensor operating in air for distance and proximity measurements,” IEEE Trans. Instrum. Meas. 1982; 29: 336-341.
19. F. Figueroa and E. Barbieri, “Increased measurement range via frequency-division in ultrasonic phase detection methods,” Acustica 1991; 73: 47-49.
20. F. Figueroa and E. Barbieri, “An Ultrasonic Ranging System for Structural Vibration Measurements,” IEEE Trans. on Instrumentation and Measurement 1991; 40: 4: 764-769.
21. M. S. Young and Y. C. Li, “A high precision ultrasonic system for vibration measurements,” Rev. Sci. Instrum. 1992; 63: 11: 5435-5441.
22. B. Matar, et al., “Noncontact measurement of vibration using airborne ultrasound,” IEEE trans. on ultrasonics, ferroelectrics, and frequency control 1998; 45: 3: 626-633.
23. J. D. Frost and Triaxial Jr. “Vector accelerometry; a methold for quantifying tremor and ataxia,” IEEE Trans. Biomed. Eng., 1978; 25, 17.
24. E. J. W. Van Someren, R. H. C. Lazeron, B. F. M. Vonk, M. Mirmiran, D. F. Swaab, “Gravitational artefact in frequency spectra of movement acceleration: implications for actigraphy in young and elderly subjects,” J. neurosci. Methods, 1996; 65, 55.
25. M. L. Aisen, B. D. Adelstein, J. Romero, A. Morris, M. Rosen, “Peripheral mechanical loading and the mechanism of the tremor of chronic alcoholism,” Arch Neurol., 1992; 49(7), 740.
26. S. Calzetti, L. J. Findley, E. Perucca, A. Richens, “The response of essential tremor to propranolol: evaluation of clinical variables governing its efficacy on prolonged administration,” J. Neurol. Neurosurg Psychiatry, 1983; 46, 393.
27. R. J. Elble, C. Higgins, K. Leffler, L. Hughes, “Factors influencing the amplitude and frequency of essential tremor,” Movement Disorder, 1994; 9(6): 589.
28. J. Ghika, A. W. Wiegner, J. J. Fran, L. Davies, R. R. Young, J. H. Growdon, “Portable system for quantifying motor abnormalities in Parkinson’s disease,” IEEE Trans. Biomed. Eng., 1993; 40(3), 276.
29. P. Iaizzo, R. Pozos, “Analysis of multiple EMG and acceleration signals of various record lengths as a means to study pathological and physiological oscillations,” Electromyogr Clin. Neurophysiol., 1992; 32, 359.
30. K. Lee, J. Lucas and L. E. Virr, “Microcomputer-controlled acoustic rangefinding technique,” J. Phys. E: Sci. Instrum., 1989; 22: 53-58.