簡易檢索 / 詳目顯示

研究生: 林昀佑
Lin, Yun-You
論文名稱: 適用於五軸主動式磁浮軸承採樣系統之強健最佳線性二次追蹤器
Robust Optimal LQT for Five-DOF Sampled-Data AMB Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 104
中文關鍵詞: 主動式磁浮軸承觀測器/卡爾曼濾波器鑑別方法等效輸入干擾線性二次數位追蹤器
外文關鍵詞: Active magnetic bearing system, Observer/Kalman filter identification method, Equivalent input disturbance, Generalized linear quadratic digital tracker
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了具有數種干擾之五軸主動式磁浮軸承(AMB)系統的完整狀態空間模型,做為一個具有挑戰性的基準問題,並針對五軸AMB採樣系統提出強建最佳線性二次數位追蹤器(LQDT)。此外,本文的其他目標為: (i) 針對一個極度不穩定的未知非線性時變AMB系統,藉由觀測器/卡爾曼濾波器鑑別方法建構一個基於額定轉速和採樣頻率下的等效離散時間線性非時變系統及其狀態估測器; (ii) 建構一個自調式干擾估測器以得到等效未知干擾(EID),當一些未知系統干擾發生在一些不可預期的時間段時,可以補償受到未知系統干擾的伺服機構之性能; 以及 (iii) 針對一個預先規劃之時變轉速及未知干擾的採樣AMB系統,建構一個強健最佳LQDT,當轉子位移偏離其預定軌跡時,控制器可以將轉子位移回復到預定軌跡上。

    A complete state-space modelling of the five-degree-of-freedom (five-DOF) active magnetic bearing (AMB) system with various disturbances has been presented in this thesis as a challenge benchmark problem. Then, a robust observer-based optimal linear quadratic digital tracker (LQDT) for the five-DOF sampled-data AMB system is proposed. In addition, the other objectives of this thesis are to: (i) Construct an equivalent discrete-time linear time-invariant model of the highly unstable unknown nonlinear time-varying AMB system and its state estimator for some specified rotation speed and sampling rate by Observer/Kalman filter identification; (ii) Construct an adaptive disturbance estimator to have the equivalent input disturbance (EID), whenever some unexpected system disturbances occur during some unexpected time periods, so that the performance compensation of the servomechanism subjected to the unexpected disturbances can be achieved; and (iii) Construct a robust observer-based optimal LQDT for the sampled-data AMB system subjected to a pre-specified time-varying rotation speed as well as unexpected disturbances, so that the controller can recover the displacements of the rotor to the pre-specified position trajectory whenever it deviates from the pre-specified position trajectory.

    摘要 I Abstract II Acknowledgement III Contents IV List of Figures VI List of Tables XII Chapter 1. Introduction 1 1.1 Background 2 1.2 Problems description 5 1.3 Papers related to this field 8 1.4 Organization 9 Chapter 2. Mathematical Modelling of Active Magnetic Bearing Systems 11 2.1 Mathematical modelling of AMB system 12 2.2 Mathematical modelling of five-DOF AMB system 14 2.3 Dynamic analyses of five-DOF AMB System 18 2.4 Mathematical modelling of five-DOF AMB system with sensors installed at locations between tips and bearings 21 Chapter 3. Optimal Linear Quadratic Tracker for Five-DOF AMB System: A Case Study on Non-Collocated Bearing and Sensor 26 3.1 Optimal linear quadratic analog tracker for the continuous-time system with known/estimated system disturbances 27 3.2 Optimal linear quadratic digital tracker for the discrete-time system with known/estimated system disturbances 28 3.3 Sampled-data controlled system 30 3.4 Illustrative examples 32 Chapter 4. System Identification Based Optimal Linear Quadratic Digital Tracker for Five-DOF Analog AMB System: Observer/Kalman Filter Identification (OKID) Method 43 4.1 Introduce Observer/Kalman filter identification (OKID) method 44 4.2 Approach 1: System identification based on input-output data sets of the fictionally controlled closed-loop system 48 4.3 Approach 2: System identification based on input-output data sets of the operating unknown system 53 4.4 Approach 3: System identification based on the fictional input-output data set of the highly unstable open-loop system 57 Chapter 5. Robust OKID-Based Optimal Linear Quadratic Digital Tracker for Five-DOF Analog AMB System 62 5.1 Proportional plus integral state estimator and EID estimator 63 5.2 Scenario 1: with an unknown mass disk 66 5.3 Scenario 2: with an unknown time-varying disturbance 73 5.4 Scenario 3: with an unknown disturbance appeared in controller input 79 5.5 Scenario 4: time-varying rotation speed 85 5.6 Scenario 5: With Scenario 1 to Scenario 4 together 91 Chapter 6. Conclusions 96 6.1 Discussions 97 6.2 Conclusions 100 6.3 Suggestions for the future works 100 References 101 Appendix 103

    [1] Chen, S.Y. (2010). Intelligent Sliding-Mode Control for Five-DOF Active Magnetic Bearing Control System. Ph. D. Dissertation, National Central University, Taiwan.
    [2] Ebrahimzadeh, F., Tsai, J.S.H., Chung, M.C., Liao, Y.T., Guo, S.M., Shieh, L.S., & Wang, L. (2017). A generalized optimal linear quadratic tracker with universal applications-Part 2: Discrete-time systems. International Journal of Systems Science, 48(2), 397-416.
    [3] Ebrahimzadeh, F., Tsai, J.S.H., Liao, Y.T., Chung, M.C., Guo, S.M., Shieh, L.S., & Wang, L. (2017). A generalized optimal linear quadratic tracker with universal applications-Part 1: Continuous-time systems. International Journal of Systems Science, 48(2), 376-396.
    [4] Juang, J.N. (1994) Applied System Identification. Prentice Hall, New Jersey.
    [5] Lewis, F.L. & Syrmos, V.L. (1995). Optimal Control. NJ: John Wiley & Sons (pp. 45-47, 56, 80).
    [6] Lin, F.J., Chen, S.Y., & Huang, M.S. (2011). Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system. IET Control Theory and Applications, 5(11), 1287-1303.
    [7] Rahman, Y. & Bernstein, D.S. (2017). Are all full-order dynamic compensators observer based?. IEEE Control Systems Magazine, 37(1), 116-122.
    [8] Schweitzer, G. & Maslen, E.H. (2009) Magnetic Bearings-Theory, Design, and Application to Rotating Machinery. Springer, Dordrecht.
    [9] She, J.H., Fang, M., Ohyama, Y., Hashimoto, H., & Wu, M. (2008). Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Trans. on Industrial Electronics, 55(1), 380-389.
    [10] Somad, F.A. (2007). System Identification and Control of Magnetic Bearing Systems. Master Thesis, School of Electrical Engineering, Victoria University, Melbourne, Australia.
    [11] Tsai, J.S.H., Ebrahimzadeh, F., Chung, M.C., Guo, S.M., Shieh, L.S., Tsai, T.J., & Wang, L. (2016). New optimal linear quadratic digital tracker for the discrete-time proper system with an unknown disturbance. 18th International Conference on Control Systems and Computer Science Engineering (ICCSCSE’16), Berlin (Germany), Part XVI, 18(5), 2307-2313.
    [12] Wu, C.Y., Tsai, J.S.H., Guo, S.M., Shieh, L.S., Canelon, J.I., Ebrahimzadeh, F., & Wang, L. (2015). A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems. Journal of the Franklin Institute-Engineering and Applied Mathematics, 35(3), 1119-1151.
    [13] Wu, C.Y., Tsai, J.S.H., Su, T.J., Guo, S.M., Shieh, L.S., & Yan, J.J. (2017). Novel OCID method-based minimal realizations in block observable/ controllable canonical forms and compensation improvement. International Journal of Systems Science, 48(7), 1522-1536.

    無法下載圖示 校內:2022-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE