| 研究生: |
林昀佑 Lin, Yun-You |
|---|---|
| 論文名稱: |
適用於五軸主動式磁浮軸承採樣系統之強健最佳線性二次追蹤器 Robust Optimal LQT for Five-DOF Sampled-Data AMB Systems |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 主動式磁浮軸承 、觀測器/卡爾曼濾波器鑑別方法 、等效輸入干擾 、線性二次數位追蹤器 |
| 外文關鍵詞: | Active magnetic bearing system, Observer/Kalman filter identification method, Equivalent input disturbance, Generalized linear quadratic digital tracker |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了具有數種干擾之五軸主動式磁浮軸承(AMB)系統的完整狀態空間模型,做為一個具有挑戰性的基準問題,並針對五軸AMB採樣系統提出強建最佳線性二次數位追蹤器(LQDT)。此外,本文的其他目標為: (i) 針對一個極度不穩定的未知非線性時變AMB系統,藉由觀測器/卡爾曼濾波器鑑別方法建構一個基於額定轉速和採樣頻率下的等效離散時間線性非時變系統及其狀態估測器; (ii) 建構一個自調式干擾估測器以得到等效未知干擾(EID),當一些未知系統干擾發生在一些不可預期的時間段時,可以補償受到未知系統干擾的伺服機構之性能; 以及 (iii) 針對一個預先規劃之時變轉速及未知干擾的採樣AMB系統,建構一個強健最佳LQDT,當轉子位移偏離其預定軌跡時,控制器可以將轉子位移回復到預定軌跡上。
A complete state-space modelling of the five-degree-of-freedom (five-DOF) active magnetic bearing (AMB) system with various disturbances has been presented in this thesis as a challenge benchmark problem. Then, a robust observer-based optimal linear quadratic digital tracker (LQDT) for the five-DOF sampled-data AMB system is proposed. In addition, the other objectives of this thesis are to: (i) Construct an equivalent discrete-time linear time-invariant model of the highly unstable unknown nonlinear time-varying AMB system and its state estimator for some specified rotation speed and sampling rate by Observer/Kalman filter identification; (ii) Construct an adaptive disturbance estimator to have the equivalent input disturbance (EID), whenever some unexpected system disturbances occur during some unexpected time periods, so that the performance compensation of the servomechanism subjected to the unexpected disturbances can be achieved; and (iii) Construct a robust observer-based optimal LQDT for the sampled-data AMB system subjected to a pre-specified time-varying rotation speed as well as unexpected disturbances, so that the controller can recover the displacements of the rotor to the pre-specified position trajectory whenever it deviates from the pre-specified position trajectory.
[1] Chen, S.Y. (2010). Intelligent Sliding-Mode Control for Five-DOF Active Magnetic Bearing Control System. Ph. D. Dissertation, National Central University, Taiwan.
[2] Ebrahimzadeh, F., Tsai, J.S.H., Chung, M.C., Liao, Y.T., Guo, S.M., Shieh, L.S., & Wang, L. (2017). A generalized optimal linear quadratic tracker with universal applications-Part 2: Discrete-time systems. International Journal of Systems Science, 48(2), 397-416.
[3] Ebrahimzadeh, F., Tsai, J.S.H., Liao, Y.T., Chung, M.C., Guo, S.M., Shieh, L.S., & Wang, L. (2017). A generalized optimal linear quadratic tracker with universal applications-Part 1: Continuous-time systems. International Journal of Systems Science, 48(2), 376-396.
[4] Juang, J.N. (1994) Applied System Identification. Prentice Hall, New Jersey.
[5] Lewis, F.L. & Syrmos, V.L. (1995). Optimal Control. NJ: John Wiley & Sons (pp. 45-47, 56, 80).
[6] Lin, F.J., Chen, S.Y., & Huang, M.S. (2011). Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system. IET Control Theory and Applications, 5(11), 1287-1303.
[7] Rahman, Y. & Bernstein, D.S. (2017). Are all full-order dynamic compensators observer based?. IEEE Control Systems Magazine, 37(1), 116-122.
[8] Schweitzer, G. & Maslen, E.H. (2009) Magnetic Bearings-Theory, Design, and Application to Rotating Machinery. Springer, Dordrecht.
[9] She, J.H., Fang, M., Ohyama, Y., Hashimoto, H., & Wu, M. (2008). Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Trans. on Industrial Electronics, 55(1), 380-389.
[10] Somad, F.A. (2007). System Identification and Control of Magnetic Bearing Systems. Master Thesis, School of Electrical Engineering, Victoria University, Melbourne, Australia.
[11] Tsai, J.S.H., Ebrahimzadeh, F., Chung, M.C., Guo, S.M., Shieh, L.S., Tsai, T.J., & Wang, L. (2016). New optimal linear quadratic digital tracker for the discrete-time proper system with an unknown disturbance. 18th International Conference on Control Systems and Computer Science Engineering (ICCSCSE’16), Berlin (Germany), Part XVI, 18(5), 2307-2313.
[12] Wu, C.Y., Tsai, J.S.H., Guo, S.M., Shieh, L.S., Canelon, J.I., Ebrahimzadeh, F., & Wang, L. (2015). A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems. Journal of the Franklin Institute-Engineering and Applied Mathematics, 35(3), 1119-1151.
[13] Wu, C.Y., Tsai, J.S.H., Su, T.J., Guo, S.M., Shieh, L.S., & Yan, J.J. (2017). Novel OCID method-based minimal realizations in block observable/ controllable canonical forms and compensation improvement. International Journal of Systems Science, 48(7), 1522-1536.
校內:2022-07-13公開