| 研究生: |
李昊宇 Li, Hao-Yu |
|---|---|
| 論文名稱: |
以低成本之改良式背電極製作高效率之薄膜矽太陽能電池 High-Efficiency Thin-Film Silicon Solar Cell with Low-Cost Improved Back Electrode |
| 指導教授: |
李文熙
Li, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 背電極 、氧化鋅鋁 、白漆 、法布利-培若 、外部量子效率 |
| 外文關鍵詞: | Back electrode, AZO, PDR, External Quantum Efficiency |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背電極在太陽能電池中扮演極關鍵角色,本論文製作一薄膜矽太陽能電池之背電極,目的在以較低廉的成本取代傳統背電極。
實驗上共分兩部分,第一部分以RF磁控濺鍍法針對背電極中的透明導電膜氧化鋅鋁(AZO)做各種製程參數之探討,以求能在電阻率以及穿透率取得最佳化條件,第二部分則針對傳統背電極作改良,一般傳統太陽能電池背電極大部分為透明導電膜搭配金屬電極(通常是Ag)再加上金屬保護層(Al或Ti),在這裡我們將Ag厚度從200~250nm減薄至30~50nm,並塗上PDR(Pigmented Dielectric Reflector)來取代Ti,PDR則採用摻有奈米級TiO2顆粒的白色膠漆狀塗料,我們簡稱白漆,目的在降低成本並藉由白漆的高反射率以及散射能力來改善Fabry-Pe´rot干涉現象以提升外部量子效率(EQE;External Quantum Efficiency)。
在AZO實驗方面,共針對基板溫度、濺鍍功率及製程壓力三組參數做實驗探討,而結果顯示將基板溫度升高、濺鍍功率加大以及降低製程壓力,可使電阻率下降,在厚度100nm達到6.4×10-3Ω.cm,而穿透率在可見光波段可達到80%以上;在白漆實驗方面,共針對三種粒徑(135nm、230nm、320nm)以及三種固含量(12%、15%、20%)的白漆做反射率及霧度量測,接著塗佈在太陽能電池元件上量測IV及QE,結果顯示三種不同粒徑的白漆均有提升QE且改善法布利-培若(Fabry-Pe´rot)干涉現象的能力但其中以粒徑135nm在Ag50nm下的改善幅度最大,推測粒徑最小的散射效率最佳。
Back electrode plays a very key role in solar cells; in this dissertation, we produce a back electrode of thin-film silicon solar cell, aiming at a lower cost to replace the traditional back electrode.
The experiment is divided into two parts; the first part, we use the RF magnetron sputtering method to deposit the transparent conductive film AZO (ZnO: Al) of the back electrode with various process parameters, in order to achieve the best resistivity and transmittance, in the second, we are in accordance with traditional back electrode for improvement. Most of the conventional back electrode of solar cells consist of the transparent conductive film and a metal electrode (usually Ag) coupled with the metal protective layer (Al or Ti). Here we use thin Ag layer with thickness reducing from 200~250nm to 30~50nm, and coated with PDR (Pigmented Dielectric Reflector) to replace Ti. PDR is a paint-like coating of white glue mixed with nano-TiO2 particles. The white paint is aimed at reducing costs and improving Fabry-Pe'rot interference by high reflectance and scattering power of the white paint to enhance external quantum efficiency.
In AZO experiments, we investigate three sets of parameters including substrate temperature, sputtering power, and working pressure. The results show that at high substrate temperature, high sputtering power and low working pressure, the AZO film of thickness 100nm has the lowest resistivity of 6.4 × 10-3Ω.cm, and the transmittance in the visible light reaches more than 80%. In white paint experiment, we measure the reflectance and the Haze of the films with three different particle size (135nm, 230nm, 320nm) and solid content (12%, 15%, 20%) of white paint, and then coat the white paint on the solar cell to measure IV and the QE. The results show that all the white paint can enhance the QE and improve Fabry-Pe'rot interference , in particular, the white paint with the particle size 135nm under Ag50nm has the most profound effect likely due to the smallest particle size has the best scattering efficiency.
[1]Climate Change 2007: The Physics Science Basis, IPCC.
[2]潘哲威,從International Photovoltaic Cells 19th看太陽能電池發展近況(2010).
[3]H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, Appl. Phys. Lett. 76, 2740 (2000).
[4]A. Suzuki, T. Matsushita, T. Aoki, Y. Yoneyama, M. Okuda, Jpn. J. Appl. Phys. 40 (2001) L401.
[5]A. Suzuki, T. Matsushita, T. Aoki, A. Mori and M. Okuda, Thin Solid Films. 411(2002)23-27.
[6]L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato, R. martins, Thin Solid Films, 511-512 (2006) 295.
[7]H. Takatsuji, “Pure Al thin film protective layer to prevent stress migration in Al wiring for thin-film transistors”, Surface and Coatings Technology, v125, n1, Mar, (2000), pp.167-172.
[8]P. Cao, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lin, B. Yao, B. H. Li, Y. Bai, X. W. Fan, Appl. Surface Sci. 254(2008)2900.
[9]B. Yao, L. X. Guan, G. Z. Xing, Z. Z. Zhang, B. H. Li, Z. P. Wei, X. H. Wang, C. X. Cong, Y. P. Xie, Y. M. Lu, D. Z. Shen, J. Lumin, 122(2007)191.
[10]J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, J. Huang, Mater. Lett. 57 (2003) 3311.
[11]X. B. Zhang, Z. L. Pei, J. Gong, C. Sun, J. Appl. Phys. 101 (2007) 014910.
[12]透明導電氧化物應用於矽薄膜太陽電池前電極之技術發展(上),工業材料雜誌,281期(2010).
[13]J. Müller, B. Rech, J Springer, M Vanecek, Solar Energy, 77, (2004)917-930.
[14]M. Vergo¨hl, N. Malkomes, B. Szyszka, F. Neumann, and T. Matthe´e,“Optimization of the reflectivity of magnetron sputter deposited silver films”, J. Vac. Sci. Technol. A18, 1632(2000).
[15]Vivian E. Ferry, Luke A. Sweatlock, Domenico Pacifici, and Harry A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells”, Nano Letters, Vol. 8, NO.12, 4391-4397(2008).
[16]H. L. Hartnagel, A. K. Jain, and C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publishing(1995).
[17]H. Czternastek, A. Brudnik, and M. Jachimowski, Solid Stat. Commun. 65, 1025(1988).
[18]H. kawazoe, H. yanagi, K. ueda, and H. Hosono, MRS Bull, Aug.,28, (2000).
[19]H. D. Liu, Y. P. Zhao, G. Ramanath, S. P. Murarka, G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films”, Thin Solid Films, vol. 384(2001)pp.151-156.
[20]C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta, T. Hirao, “Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering”, Thin Solid Films, vol.517(2009)pp.3265-3268 .
[21]Yoichi Hoshi, Takakazu Kiyomura, “ITO thin films deposited at low temperatures using a kinetic energy controlled sputter-deposition technique”, Thin Solid Films, vol.411(2002)pp.36-41.
[22]A. E. Rakhshani, Y. Madisi, H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films”, Journal of Applied Physics, vol. 83 (1998) pp. 1049-1056.
[23]H. S. Yoon, K. S. Lee, T. S. Lee, B. Cheong, D. K. Choi, D. H. Kimc, W. M. Kima, “Properties of fluorine doped ZnO thin films deposited by magnetron sputtering”, Solar Energy Materials & Solar Cells, vol. 92 (2008) pp.1366-1372.
[24]溫文杰,“電漿氣氛對射頻磁控濺鍍法沉積AZO薄膜特性影響之研究",大同大學材料工程研究所,碩士論文(2007).
[25]C. H. YI, Itaru and Y.Shigesato, Jpn. J. Appl. Phys. 1, Vol.34, p.1638, (1995).
[26]陳靜怡,“氧化鋅中介層對ITO透明導電膜性質之影響",國立成功大學材料科學所,碩士論文(2002).
[27]W. R. Grove, “On Some Phenomena of the Voltaic Discharge”, The Philosophical Magazine, vol. 16(1840)pp.478-482.
[28]賴耿陽,“IC 製程之濺射技術”,復漢出版社,(1997).
[29]T. Minami, S. Ida, T. Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation”, Thin Solid Films, vol. 416(2002)pp.92-96.
[30]Brian Chapman, “Glow Discharge Processes Sputtering and Plasma Etching”, John Wiley and Sons Inc, New York, (1980).
[31]J. A. Thornton, “Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol, vol. 11(1974) pp. 666-670.
[32]J. A. Thornton, “Influence of substrate temparature and deposition rate on structure of thick sputtered Cu coatings”, J. Vac. Sci. Technol, vol. 12 (1975) pp. 830-835.
[33]B. Lewis and J. C. Anderson, “Nucleation and Growth of Thin Film”, (1978).
[34]H. J. MOller, Semiconductor for solar cell, Artech House Press, Boston, (1993).
[35]太陽電池量測技術,工業材料雜誌,258期,(2008).
[36]S.O.Kasap,Optoelectronics (Prentice Hall),(1999).
[37]林明獻,太陽電池入門技術,2nd ed.,全華圖書股份有限公司,(2008).
[38]李冠卿,近代光學,聯經出版事業公司,(1988).
[39]http://zh.wikipedia.org/wiki/File:Etalon-1.svg
[40]A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results, ”Chemical Reviews, vol. 95, no.3, pp.735-758,(1995).
[41]Jeffrey E. Cotter,* Robert B. Hall, Michael G. Mauk and Allen M. Barnett, Light Trapping in Silicon-Film Solar Cells with Rear Pigmented Dielectric Reflectors, Res. Appl. 7,261-274(1999).
[42]http://airp.org.tw/SOP/NCKU/SOP%204-Point%20Probe.pdf
[43]D. L. Smith, Chap10 Film Analysis, Thin Film Deposition, McGraw-Hill, New York,USA,(1995).
[44]汪建民,材料分析,中國材料科學學會,(1998).
[45]B. Chapman, “Glow Discharge Processes”, John Wiley & Sons. Inc. N. Y. , (1980), chap.1.
[46]K. Meyer, I. K. Schuller and C. M. Falco, “Thermalization of sputtered atoms”, J. Applt. Phys. 52, 5803 (1981).
[47]Mitsuhara Konuma, “Film deposition by plasma technique”
[48]Westwood, W. D., “Calculation of Deposition Rates in Diode Sputtering System”, J. Vac. Sci. Techl., (1978)15:1.
[49]D. L. Smith, “Thin-Film Deposition”, McGraw Hill (1995).
[50]G. M. Turner, “Monte Carlo calculations of the properties of sputtered atoms at a substrate surface in a magnetron discharge”, p.455-461.