簡易檢索 / 詳目顯示

研究生: 蘇佳琪
Su, Chia-chi
論文名稱: 非離子聚合物插層電荷縮減蒙脫石漿料之穩定及流變性研究
Effects of nonionic polymers intercalation on the stability and rheological properties of reduced charge montmorillonite suspensions
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 149
中文關鍵詞: 流變行為非離子聚合物非離子界面活性劑電荷縮減蒙脫石
外文關鍵詞: reduced charge montmorillonite (RCM), rheological properties, nonionic surfactants, nonionic polymers
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電荷縮減之程序進行蒙脫石(montmorillonite)層電荷密度修改,並以非離子型聚合物與界面活性劑插層電荷縮減蒙脫石(reduced charge montorillonite, RCM),探討非離子聚合物與界劑吸附在蒙脫石層間表面之吸附機制,及了解蒙脫石結構電荷量對非離子聚合物與界劑吸附行為之影響,並觀察吸附非離子聚合物與界劑後之RCM懸浮液穩定性及流變行為的改變。
    RCM之製備與性質分析結果顯示蒙脫石層間Li+飽和程度愈高,其受熱處理而電荷縮減之反應愈敏感。熱處理溫度和時間皆是影響蒙脫石電荷縮減程度的重要參數。RCM之結構電荷量愈高,其顆粒在水中之剝離程度愈大且穩定分散於水中,呈現之懸浮液黏度高。
    非離子聚合物與界劑之等溫吸附實驗結果顯示RCM與非離子聚合物及界劑間之親和性相當強,其等溫吸附曲線屬Langmuir型。漫反射紅外光譜(DRIFTS)分析結果證明聚乙二醇型非離子界劑與聚乙烯氧化物(PEO)主要是藉其分子中乙烯氧之氧原子與黏土結構OH基之氫產生氫鍵作用而吸附於RCM表面。因此當RCM層電荷量降低,存在RCM層間表面之水合陽離子減少,使顯露之疏水矽氧烷(siloxane, Si-O-Si)表面積增多,因而促進分子中有乙烯氧(-CH2-CH2-O, EO)鏈之非離子聚合物與界劑大量吸附。而聚乙烯醇(PVA)分子鏈上之OH基與黏土層間表面氧產生氫鍵作用而吸附於RCM表面,另外PVA亦可藉其分子上的OH基與黏土結構OH基產生氫鍵吸附在RCM表面。低層電荷量之RCM有利於PEO與PVA吸附,然而當RCM層電荷量低於原始陽離子可交換量(CEC)一半時,造成單位層間部份坍塌而降低RCM對PEO與PVA的吸附量。聚乙烯吡咯烷酮(PVP)可能經由C=O官能基與RCM層間陽離子或其外圍水分子相互作用而鍵結,因此其等溫吸附結果顯示RCM層電荷量愈高對PVP之吸附量愈多。
    X光粉末繞射(XRD)結果顯示非離子界劑與聚合物皆以平躺(train)方式插層於蒙脫石層間。低電荷量RCM吸附聚乙二醇型非離子界劑與PEO達飽和量時,其層間距擴展約為18 Å;另外,低電荷量RCM吸附PVA達飽和量時,層間距則擴展約為19 Å。高電荷量RCM吸附PVP達飽和量,其層間距最大可擴展至24.8 Å。
    吸附聚乙二醇型非離子界劑與PEO造成蒙脫石之卡片屋結構瓦解,因而降低其懸浮液之黏度,但蒙脫石懸浮液仍可保有高穩定性。另外,單位層部份坍塌之較低電荷量RCM(170C-SAz Li)吸附聚乙二醇型非離子界劑與PEO後可提高其與水分子的親和性,促進較低電荷量RCM顆粒在懸浮液中之剝離程度並提高懸浮液之分散穩定性。然而PVA與PVP無法有效吸附在較低電荷量RCM(170C-SAz Li)層間表面,故其顆粒在懸浮液中之剝離程度仍低且無法穩定分散於水中。吸附大量PVP使高電荷量RCM (25C-SAz Li)顆粒因空間穩定作用而分散,並且懸浮液黏度降至最低。低電荷量RCM(150C-SAz Li)大量吸附PVA後,使其表面的聚合物以OH基彼此吸引,降低顆粒間排斥力,懸浮液黏度降至最低。

    The objectives of this study were to investigate the effects of layer charge on the intercalation of nonionic polymers and nonionic surfactants into layered silicates using a series of reduced charge montmorillonite (RCM), and to evaluate adsorptive properties of nonionic polymers and nonionic surfactants on montmorillonite. Furthermore, the stability and rheological properties of nonionic polymers and nonionic surfactants intercalated RCM suspensions were explored.
    The results obtained from RCM preparation and characterization indicated that a high degree of Li+ saturation in the interlayer space leads to a high sensitivity of charge reduction of montmorillonite upon heating. Heating temperature and time were important parameters controling the degree of charge reduced of montmorillonite. Suspensions of high charge RCM exhibit a high viscosity and stability due to the delamination of montmorillonite into thinner particles.
    The adsorption isotherms show that sorption of nonionic polymers and nonionic surfactants on RCM appear to be of the high-affinity type, and can be fitted by the Langmuir equation. The results of DRIFT spectra concluded that the hydrophobic interaction (between CH2-CH2- groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of montmorillonite) are the major driven forces for polyethylene glycol and PEO adsorption on montmorillonite. Low charge RCM with a less portion of the siloxane surface covered by exchangeable cations demonstrated an increasing polyethylene glycol and PEO adsorption capacity. The DRIFT spectra confirmed that hydrogen bonds are formed between the PVA hydroxyl groups and the oxygens of the silicate layer or structure OH of the montmorillonite. This suggests that PVA would adsorb preferentially on the surface of low charge RCM. On the other hand, PVA adsorption capacity is inhibited by the partially collapsion of RCMs layer structure occuring when the amount of interlayer cation is less than 50 per cent of its original exchange capacity. PVP adsorption increases with increasing in the layer charge of RCM. It appears that the adsorption of PVP on RCM was induced by the interaction between C=O group of PVP and interlayer cations or solvating water.
    The results of the d001 spacing obtained by XRD indicated that nonionic polymers and nonionic surfactants were intercalated into and consequently expanded the interlayer space of RCM. The adsorbed nonionic polymers and nonionic surfactants take train segments predominantly on RCM. The d-spacing of the RCM increased to ~18 Å when saturated with polyethylene glycol and PEO. The PVA and PVP saturated RCM, however, were expanded nearly to 19 Å and 24.8 Å, respectively.
    Due to the collapse of card-house structure, polyethylene glycol and PEO adsorbed on RCM leads to a decrease in suspension viscosity. However, suspensions of polyethylene glycol and PEO/RCM still maintain its high stability. The delamination of low charge RCM (170C-SAz Li) in water was enhanced when polyethylene glycol and PEO intercalated into the partially collapsed layer of low charge RCM (170C-SAz Li), presumbly due to the hydrophilic ether oxygen of adsorbed polyethylene glycol and PEO. Nevertheless, poor efficiency of the penetration of PVA and PVP into the interlayer of RCM made low charge RCM (170C-SAz Li) suspensions unstable. The high charge RCM suspension presents a much lower viscosity value at the highest PVP loading due to the steric stabilization effect. When saturated with PVA, the repulsive force between particles of low charge RCM (150C-SAz Li) was decreased by the interaction of OH groups of adsorbed PVA and the viscosity of suspensions was lowered consequently.

    摘要 I Abstract III 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 1-3 研究架構與目的 5 第二章 理論基礎 7 2-1 蒙脫石基本構造與性質 7 2-1-1 蒙脫石基本構造 7 2-1-2 蒙脫石物化特性 8 2-2 表面吸附作用 12 2-2-1 吸附理論 12 2-2-2 非離子界劑在親水表面之吸附作用 14 2-2-3 非離子界劑吸附在黏土表面之機制 16 2-2-4 非離子聚合物在黏土表面之吸附作用 17 2-3 黏土顆粒間之相互作用 18 2-3-1 黏土膠體顆粒之電雙層 18 2-3-2 黏土膠體顆粒間之排斥作用 20 2-3-3 黏土膠體顆粒間之凡得瓦爾引力作用 21 2-3-4 總相互作用能 22 2-4 膠體之流變行為 23 2-4-1 流體分類 24 2-4-2 黏土膠體流變性質 26 第三章 電荷縮減蒙脫石之製備和性質探討 31 3-1 前言 31 3-1-1 蒙脫石電荷縮減原理 32 3-2 實驗步驟與分析方法 34 3-2-1 實驗材料及製備方法 34 3-2-2 分析方法 36 3-3 結果與討論 39 3-3-1 RCM之製備 39 3-3-2 RCM之XRD與TG/DTA分析 41 3-3-3 RCM/MB懸浮液之可見光光譜分析 44 3-3-4 RCM粒徑分佈 48 3-3-5 RCM流變性 49 3-3-6 RCM混凝實驗 51 3-4 結論 53 第四章 非離子型界劑插層電荷縮減蒙脫石漿料之穩定及流變性 54 4-1 前言 54 4-1-1 非離子型界面活性劑簡介 54 4-1-2 黏土吸附界面活性劑之簡介 55 4-2 實驗步驟與方法 56 4-2-1 實驗材料及步驟 56 4-2-2 分析方法 59 4-3 結果與討論 61 4-3-1 蒙脫石與RCM吸附非離子界劑之等溫吸附線 61 4-3-2 蒙脫石與RCM吸附非離子界劑之XRD分析 65 4-3-3 蒙脫石與RCM吸附非離子界劑之DRIFTS分析 71 4-3-4 蒙脫石與RCM吸附非離子界劑後懸浮液之穩定性 79 4-3-5 蒙脫石與RCM吸附非離子界劑後懸浮液之流變性 82 4-3-6 蒙脫石與RCM吸附非離子界劑後懸浮液之混凝實驗 87 4-3-7 蒙脫石與RCM吸附非離子界劑後之SEM影像 92 4-4 結論 95 第五章 非離子聚合物插層電荷縮減蒙脫石漿料之穩定及流變性 96 5-1 前言 96 5-1-1 聚合物簡介 96 5-1-2 非離子聚合物/黏土簡介 98 5-2 實驗步驟與方法 100 5-3 結果與討論 104 5-3-1 RCM吸附非離子聚合物之等溫吸附線 106 5-3-2 RCM吸附非離子聚合物之XRD分析 112 5-3-3 RCM吸附非離子聚合物之DRIFTS分析 116 5-3-4 RCM吸附非離子聚合物後之穩定及流變性 127 5-3-5 RCM吸附非離子聚合物之TEM分析 133 5-4 結論 138 總結論 140 參考文獻 141

    尤明瑤 (2003),「以水溶液分散技術製備聚乙烯醇/蒙脫土奈米複合材料及其性質與應用研究」,私立中原大學 化學研究所 碩士論文。
    任磊夫 (1992),「黏土礦物與黏土岩」,地質出版社。
    林江珍 (1998),「非離子界面活性劑」,J. Chin Colloid & Interface Soc. 21(2), 35-53。
    林清安 (2004),「界面活性劑與紡織工業應用」,台灣區絲織工業同業公會,10-12。
    金珠,張美云 (2005),「聚氧乙烯的特性及其在造紙工業中的應用」,Paper and Paper Making 3,65-67。
    周祖康,願愓人,馬季銘(1991),「膠體化學基礎」,北京大學出版社。
    周宏隆 (2000),「聚乙烯醇/黏土複合材料之物理化學性質與結構分析」,國立中山大學 材料科學與工程研究所 碩士論文。
    許員豪,王明光和王一雄 (2000),「蒙特石及蛭石吸持十六烷基三甲基銨形成有機黏粒機制之探討」,土壤與環境,第3卷2期,113-120。
    范麗針,南策文,黨智敏,施展 (2003),「聚氧乙烯-改性蒙脫石複合材料電性能研究」,矽酸鹽學報,第31卷1 期,57-65。
    陳培源 (1996),「礦物學名稱」,國立編譯館。
    陳憲偉 (2002),「高分子/黏土/鋰金屬鹽所組成之奈米級高分子電解質複合材料之研究」,國立交通大學 應用化學研究所 博士論文。
    蔡宗燕 (1998),「奈米級無機材料的發展與應用」,化工資訊,第12卷2期,28-42。
    楊博淳 (2003),「以乙烯氧鍵吸附量測定蒙脫石表面積之研究」,國立成功大學 資源工程研究所 碩士論文。
    趙杏媛,張有瑜 (1990),「黏土礦物與黏土礦物分析」,海洋出版社,中國北京。
    萬鵬 (2004),「聚乙烯基吡咯烷酮研究進展」,精細與專用化學品,第12卷8期,8-10。
    韓立國,呂開河 (2005),「聚乙二醇抑制岩屑水化分散作用的影響因素研究」,石油鑽探技術,第33卷4期,42-44。
    Abend, S., and Lagaly, G. (2000), “Sol-gel transitions of sodium montmorillonite dispersions” , Applied Clay Science 16, 201-227.
    Alemdar, A., Atıcı, O., and Güngör, N. (2000), “The influence of cationic surfactants on rheological properties of bentonite-water systems”, Materials Letters 43, 57-61.
    Alemdar, A., Güngör, N., Ece, O. I., and Atici, O. (2005), “The rheological properties and characterization of bentonite dispersions in the presence of non-ionic polymer PEG”, Journal of Materials Science 40, 171-177.
    Alla, S. G. A., El-Din, H. M. N., El-Naggar, A. W. M. (2006), “Electron beam synthesis and characterization of poly(vinyl alcohol)/montmrillonite nanocomposites”, Journal of Polymer Science 102, 1129-1138.
    Alvero, R., Alba, M. D., Castro, M. A., and Trillo, J. M. (1994), “Reversible Migration of lithium in montmorillonites”, J. Phys. Chem. 98, 7848-7853.
    Aranda, P., and Eduardo, R. H. (1994), “New polyelectrolyte materials based on smectite polyoxyethylene intercalation compounds”, Acta Polymerica 45, 59-67.
    Aranda, P., and Eduardo, R. H. (1999), “Poly(ethylene oxide)-NH4+-smectite nanocomposites”, Applied Clay Science 15, 119-135.
    Behl, S., and Moudgil, B. M. (1993), “Mechanisms of Poly(ethylene oxide) interactions with Dolmite and Apatite”, Journal of Colloid and Interface Science 161, 443-449.
    Benna, M., Kbir-Ariguib, N., Magnin, A., and Bergaya, F. (1999), “Effect of pH on rheological properties of purified sodium bentonite suspensions”, Journal of Colloid and Interface Science 218, 422-455.
    Blum, A. E., and Eberl, D. D. (2004), “Measurement of clay surface areas by polyvinylpyrrplidone(PVP) sorption and its use for quantifying illite and smectite adundance”, Clays and Clay Minerals 52(5), 589-602.
    Breen, C., Madejova, J., and Komadel, P. (1995), “Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis”, Journal of Materials Chemistry 5, 469-474.
    Breen, C., and Watson, R., (1998), “Polycation-exchanged clays as sorbents for organic pollutants: influence of layer charge on pollutant sorption capacity”, Journal of Colloid and Interface Science 208, 422-429.
    Brindley, G. W., and Ertem, G. (1971), “Preparation and salvation properties of some variable charge montmorillonites”, Clays and Clay Minerals 19, 399-404.
    Bujdák, J., Iyi, N., and Fujita, T. (2002), “The aggregation of methylene blue in montmorillonite dispersions”, Clay Minerals 37, 121-133.
    Bujdák, J., Iyi, N., Hrobáriková, J., and Fujita, T., (2002), “Aggregation and decomposition of a pseudoisocyanine dye in dispersions of layered silicates”, Journal of Colloid and Interface Science 247, 494-503.
    Bujdák, J., Hackett, E., and Giannelis, E. P. (2000), “Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: implications on nanocomposite polymer electrolytes”, Chemistry Material 12, 2168-2174.
    Bujdák, J., and Komadel, P. (1997), “Interaction of methylene blue with reduced charge montmorillonite”, J. Phys. Chem. B 101, 9065-9068.
    Bujdák, J., Janek, M., Madejová, J., and Komadel, P. (2001), “Methylene blue interactions with reduced-charge smectites”, Clays and Clay Minerals 49(3), 244-254.
    Bujdák, J., and Iyi, N. (2002), “Visible spectroscopy of cationic dyes in dispersions with reduced-charge montmorillonites”, Clays and Clay Minerals 50(4), 446-454.
    Bussetti, S. G. de and Ferreiro, E. A. (2004), “Adsorption of poly(vinyl alcohol) on montmorillonite”, Clays and Clay Minerals 52(5), 589-602.
    Calvet, R., and Prost, R. (1971), “Cation migration into empty octahedral sites and surface properties of clays”, Clays and Clay Minerals 19, 175-186.
    Cenens, J., and Schoonheydt, R. A. (1988), “Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension”, Clays and Clay Minerals 36(3), 214-224.
    Chang, J. H., Jang, T. G., Ihn, K. J., Lee, W. K., and Sur, G. S. (2003), “Poly(vinyl alcohol) nanocomposites with different clays: pristine clays and organoclays”, Journal of Applied Polymer Science 90, 3208-3214.
    Chiou, C. T. and Rutherford, D. W. (1997), “Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays”, Clays and Clay Minerals 45(6), 867-880.
    Chiou, C. T. (2002), “Partition and adsorption of organic contaminants in environmental systems”,Wiley-Interscience, A John Wiley & Sons, Inc., c2002, pp.39-52.
    Chun, Y., Sheng, G., and Boyd, S. A. (2003), “Sorptive characteristics of tetraalkylammonium-exchanged smectite clays”, Clays and Clay Minerals 51(4), 415-420.
    Christidis, G. E., Blum, A. E., and Eberl, D. D. (2006), “Influence of layer charge and charge distribution of smectites on the flow behavior and swelling of bentonites”, Applied Clay Science 34, 125-138.
    Cione, A. P. P., Neumann, M. G., and Gessner, F. (1998), “Time-dependent spectrophotometric study of the interaction of basic dyes with clays”, Journal of Colloid and Interface Science 198, 106-112.
    Clementz, D. M., Mortland, M. M., and Pinnavaia, T. J. (1974), “Properties of reduced charge montmorillonites: hydrated Cu(III) ions as a spectroscopic probe”, Clays and Clay Minerals 22, 49-57.
    Clementz, D. M. and Mortland, M. M. (1974), “Properties of reduced charge montmorillonite: tetra-alkylammonium ion exchange forms”, Clays and Clay Minerals 22, 223-229.
    Darley, H. C. H. and Gray, G. R. (1991), “Composition and properties of drilling and completion fluids”, 5 th edition, Gulf, USA, pp.140-183.
    Delozier, D. M., Orwoll, R. A., Cahoon, J. F., Ladislaw, J. S., Smith Jr., J. G., Connell, J. W. (2003), “Polyimide nanocomposities prepared from high-temperature, reduced charge organoclays”, Polymer 44, 2231-2241.
    Deng, Y., Dixon, J. B. and White, G. N. (2003), “Intercalation and surface modification of smectite by two non-ionic surfactants”, Clays and Clay Minerals 51(2), 150-161.
    Deng, Y., Dixon, J. B., and White, G. N. (2006), “Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite”, Colloids Polym Sci. 284, 347-356.
    Ece, Ö. I., Güngör, N., and Alemdar, A. (1999), “Influences of electrolytes, polymers and a surfactant on rheological properties of bentonite-water systems”, Journal of Inclusion Phenomena and Macrocyclic Chemistry 33, 155-168.
    Ece, Ö. I., Güngör, N., and Alemdar, A. (1999), “Influences of electrolytes, polymers and a surfactant on rheological properties of bentonite-water systems”, Journal of Iinclusion Phenomena and Macrocyclic Chemistry 33, 155-168.
    Emerson, W. W., and Raupach, M. (1964), “The reaction of polyvinyl alcohol with montmorillonite”, Australian Journal of Soil Research 2, 46-55.
    Everett, D. H. (1988), “Basic Principles of Colloid Science”, Royal Society of Chemistry, pp.110.
    Ferreiro, E. A., and Bussetti, S. G. de (2006), “Adsorption of 1, 10-phenanthroline on montmorillonite-poly(vinyl alcohol) complexes as a function of pH”, Applied Clay Science 31, 142-153.
    Francis, C. W. (1973), “Adsorption of polyvinylpyrrolidone on reference clay minerals”, Soil Science 115(1), 40-54.
    Gamiz, E., Linares, J., and Delgado, R. (1992), “Assessment of two Spanish bentonites for pharmaceutical uses”, Applied Clay Science 6, 359-368.
    Ghiaci, M., Kalbasi, R. J., and Abbaspour, A. (2007), “Adsorption isotherms of non-ionic surfactants on Na-bentonite (Iran) and evaluation of thermodynamic parameters”, Colloids and Surfaces A: Physicochem. Eng. Aspects 297, 105-113.
    Greenland, D. J. (1963), “Adsorption of polyvinyl alcohols by montmorillonite”, Journal of Colloid Science 18, 647-664.
    Grim, R. E., and Güven, N. (1978), “Bentonites-Geology”, Mineralogy. Properties and Uses: Elsevier, Amsterdam, 24-25.
    Günister, E., İşçi, S., Öztekin, N., Erim, F. B., Ece, Ö. I., and Güngör, N. (2006),“Effect of cationic surfactant adsorption on the rheological and surface properties of bentonite dispersions”, Journal of Colloid and Interface Science 303, 137-141.
    Güngör, N. (2000), “Effect of the adsorption of surfactants on the rheology of Na-bentonite slurries”, Journal of Applied Polymer Science 75, 107-110.
    Gessner, F., Schmitt, C. C., and Neumann, M. G. (1994), “Time-dependent spectrophotometric study of the interaction of basic dyes with clays. 1.methylene Blue and Neutral Red on montmorillonite and hectorite”, Langmuir 10, 3749-3753.
    Hang, P. T., and Brindley, G. W. (1970), “Methylene blue adsorption by clay minerals determination of surface areas and cation exchange capactites (clay-organic studies XVIII)”, Clays and Clay Minerals 18, 203-212.
    Heath, D., and Tadors, Th. F. (1983), “Influence of pH, electrolyte, and poly(vinyl alcohol) addition on the rheological characteristics of aqueous dispersions of sodium montmorillonite”, Journal Colloid Interface Science 93, 307-319.
    Heller, H., and Keren, R. (2002), “Anionic polyacrylamide polymers effect on rheological behavior of sodium-montmorillonite suspensions”, Soil Sci. Soc. Am. J. 66, 19-25.
    Hetzel, F., and Doner, H. E. (1993), “Some colloidal properties of beidellite: comparison with low and high charge montmorillonite”, Clays and Clay Minerals 41(4), 453-460.
    Hild, A., Séquaris, J. M., Narres, H. D., and Schwuger, M. (1997), “Adsorption of polyvinylpyrrolidone on kaolinite”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 123-124, 515-522.
    Hild, A., Séquaris, J. M., Narres, H. D., and Schwuger, M. J. (1998), “Adsorption of anionic surfactant Na-dodecylsulphate(SDS) at the polyvinylpyrrolidone(PVP)-modified Na-montmorillonite surface”, Progr Colloid Polym Sci. 111, 174-178.
    He, H., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y., and Kloprogge, J. T. (2006), “Changes in the morphology of organoclays with HDTMA+ surfactant loading”, Applied Clay Science 31, 262-271.
    Hrobarikova, J., Madejová, J., and Komadel, P., (2001), “Effect of heating temperature on Li-fixation, layer charge and properties of fine fractions of bentonites”, J. Mater.Chem. 11, 1452-145.
    Hundal, L. S., Thompson, M. L., Laird, D. A., and Carmo, A. M. (2001), “Sorption of phenanthrene by reference smectites”, Environ. Sci. Technol. 35, 3456-3461.
    İşçì, S., Ünl, C. H., Atici, O., and Güngör, N. (2006), “Rheology and structure of aqueous bentonite-polyviyl alcohol dispersions”, Bull. Mater. Sci. 29, 449-456.
    İşci, S., Günister, E., Ece, Ö. I., and Güngör, N. (2004), “The modification of rheologic properties of clays with PVA effect”, Materials Letters 58, 1975-1978.
    Jacobs, K. Y., and Schoonheydt, R. A. (1999), “Spectroscopy of methylene blue-smectite suspensions”, Journal of Ccolloid and Interface Science 220, 103-111.
    Janek, M., and Lagaly, G. (2003), “Interaction of a cationic surfactant with bentonite, a colloid chemistry study”, Colloid Polym. Sci. 281, 293-301.
    Jaynes, W. F., and Boyd, S. A. (1991), “Clay mineral type and organic compound sorption by hexadecyltrimethylammonium -exchanged clays”, Soil Science Society of America Journal 55, 43-48
    Jaynes, W. F. and Vance, G. F. (1996), “BETX sorption by organo-clay: cosorptive enhancement and equivalence of interlayer complexes”, Soil Science Society of America journal 60, 1742-1749.
    Jaynes, W. F., and Bigham, J. M. (1987), “Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites”, Clays and Clay Minerals 35(6), 440-448.
    Jung, H. M. J., Lee, E. M., Ji, B. C., Deng, Y., Yun, J. D., and Yeum, J. H. (2007), “Poly(vinyl acetate)/poly(vinyl alcohol)/montmorillonite nanocomposite microspheres prepared by suspension polymerization and saponification”, Colloid Polym. Sci. 285, 705-710.
    Madejová, J., Bujdák, J., Petit, S., and Komadel, P. (2000), “Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated diotahedral smectite. (I) Mid-infrared region”, Clay Minerals 35, 739-751.
    Séquaris, J. M., Hild, A., Narres, H. D., and Schwuger, M. J. (2000), “Polyvinylpyrrolidone adsorption on Na-montmorillonite. Effect of the polymer interfacial conformation on the colloidal behavior and binding of chemicals”, Journal of Colloid and Interface Science 230, 73-83.
    Karakassides, M. A., Gournis, D., and Petridis, D. (1999), “An infrared reflectance study of Si-O vibrations in thermally treated alkali-saturated montmorillonites”, Clay Minerals 34, 429-438.
    Keren, R. (1988), “Rheology of aqueous suspension of sodium/calcium montorillonite”, Soil Sci. Soc. Am. J. 52, 924-928.
    Keren, R. (1989), “Effect of Clay Charge Density and Adsorbed Ions on the Rheology of Montmorillonite Suspension”, Soil Sci. Soc. Am. J. 53, 25-29.
    Klein, C., and Hurlbut, Jr, C. S. (1993), “Manual of Mineralogy”, 21 edition, John Wiley & Sons, Inc., pp.512.
    Koksal, E., Ramachandran, R., Somasundaran, P., and Maltesh, C. (1990), “Flocculation of ixides using polyethylene oxide”, Powder Technology 62, 253-259.
    Komadel, P., Bujdák, J., Madejová, J., Šucha, V., and Elsass, F., (1996), “Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid”, Clay Minerals 31, 333-345.
    Komadel, P., Hrobáriková, J., Smrčok, Ľ., and Koppelhuber-Bitschnau, B. (2002), “Hydration of reduced-charge montmorillonite”, Clay Minerals 37, 543-550.
    Komadel, P., Madejová, J., and Bujdák, J. (2005), “Preparation and propetries of reduced-charge smectites”, Clays and Clay Minerals 53(4), 313-334.
    Kukkadapu, R. K., and Boyd, S. A. (1995), “Tetramethylphosphonium -and tetramethylammonium-smectites as adsorbents of aromatic and chlorinated Hydrocarbons: effect of water on adsorption efficiency “, Clays and Clay Minerals 43(3), 318-323.
    Lagaly, G., (1989), “Principles of flow of kaolin and bentonite dispersion”, Applied Clay Science 4, 105-123.
    Lagaly, G., and Ziesmer, S. (2005), “Surface modification of bentonites. III. Sol-gel transitions of Na-montmorillonite in the presence of trimethylammonium-end-capped poly(ethylene oxides)”, Clay Minerals 40, 523-536.
    Laird, D. A. (1999), “Layer charge influences on the hydration of expandable 2:1 phyllosilicates”, Clays and Clay Minerals. 47(5), 630-636.
    Laribi, A., Fleureau, J. M., Grossiord, J. L., and Nejia, K. A. (2006), “Effect of pH on the rheological behavior of pure and interstratified smectite clsya”, Clays and Clay Minerals 54(1), 29-37.
    Lee, J. F., Mortland, M. M., Boyd, S. A., and Chiou, C. T. (1989), “Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite”, J. Chem. Soc. Faraday Trans. 85(9), 2953-2962.
    Lee, J. F., Mortland, M. M., Chiou, C.T., Kile, D. E., and Boyd, S.A. (1990), “Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water”, Clays and Clay Minerals 38(2), 113-120.
    Lee, S. Y., and Kim, S. J. (2002), “ Expansion of smectite by hexadecyltrimethylammonium”, Clays and Clay Minerals 5(4), 435-445.
    Lee, S. Y., and Kim, S. J. (2002), “Expansion characteristics of organoclay as a precursor to nanocomposites”, Colloids and Surfaces A: Physicochem. Eng. Aspects 211, 19-26.
    Lee, S. Y., Cho, W. J., Hahn, P. S., Lee, M., Lee, Y. B., and Kim, K. J. (2005), “Microstructural changes of reference montmorillonites by cationic surfactants”, Applied Clay Science 30, 174- 180.
    Levy, R., and Francis, C. W. (1975), “Interlayer adsorption of polyvinylpyrrolidone on montmorillonite”, Journal of Colloid and Interface Science 50(3), 442-450.
    Luckham, P. F., and Rossi, S. (1999), “The colloidal and rheological properties of bentonite suspensions”, Advances in Colloid and Interface Science 82, 43-92.
    Ìsrael, L., Güler, Ć., Yilmaz, H., and Güler, S. (2001), “The adsorption of polyvinyl- pyrrolidone on kaolinite satirated with sodium chloride”, J. of Colloid and Interface Science 238, 80-84.
    Madejová, J., Bujdák, J., Gates, W. P., and Komadel, P. (1996), “Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents”, Clay Minerals 31, 233-241.
    Madejová, J., Arvaiová, B., and Komadel, P. (1999), “FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonite”, Spectrochimica Acta Part A 55, 2467-2476.
    Madejová, J., Pálková, H., and Komadel, P. (2006), “Behaviour of Li+ and Cu2+ in heated montmorillonite: evidence from far-, mid-, and near-IR regions”, Vibrational Spectroscopy 40, 80-88.
    Malfoy, C., Pantet, A., Monnet, P., and Righi, D. (2003), “Effects of the nature of the exchangeable cation and clay concentration on the rheological properties of smectite suspensions”, Clays and Clay Minerals 51(6), 656-663.
    Means, J. C. (1980), “Sorption of polynuclear aromatic hydrocarbons by sediments and soils”, Environmental science and technology 14(12), 1524-1528.
    Neaman, A., and Singer, A. (2000), “Rheological properties of aqueous suspensions of palygorskite”, Published in Soil Sci. Soc. Am. J. 64, 427-436.
    Neumann, M. G., Gessner, F., Schmitt, C. C., and Sartori, R. (2002), “Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension”, Journal of Colloid and Interface Science 255, 254-259.
    Guzenko, N. V., Voronina, O. E., Pakhlov, E. M., and Voronin, E. F. (2001), “Effect of surface modification with poly(vinyl pyrrolidone) on the viscosity of aqueous suspensions of highly dispersed silica”, Pharmaceutical Chemistry Journal 35(1), 49-52.
    Okada, A., Fukushima , Y., Kawasumi, M., Inaqaki, S., Usuki, A., Suqiyama, S., Kurauchi, T., Kamiqaito, O. (1988), “Manual of MineralogyComposite material and process for manufacturing same”, United States Patent, No. 4,739,007, April 19.
    Olphen, H. Van (1977), “Introduction to Clay Colloid Chemistry”, 2nd edition, John Wiley& Sons, New York, pp.100.
    Parfitt, R. L., and Greenland, D. J. (1970), “The adsorption of poly(ethylene glycols) on clay minerals”, Clay Minerals 8, 305-315.
    Pattanaik, M., and Bhaumik, S. K. (2000), “Adsorption behaviour of polyvinyl pyrrolidone on oxide surfaces”, Materials Letters 44, 352-360.
    Permien, T., and Lagaly, G. (1995), “The rheological and colloidal propertiesof bentonite dispersion in the presence of organic compounds v. bentonite and sodium montmorillonite and surfactans”, Clays and Clay Minerals 43(2), 229-236.
    Ray, A. B., Ma, J., and Borst, M. (1995), “Adsorption of surfactant on clays”, Hazardous Waste and Hazardous Materials 12(4), 357-364.
    Rubio, Jorge (1981), “The flocculation properties of poly(ethylene oxide)”, Colloids and Surfaces 3, 79-95.
    Sato, T., Watanabe, T., and Otsuka, R. (1992), “Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites”, Clays and Clay Minerals. 40(1), 103-113.
    Schick, M. J. (1967), “Nonionic surfactants”, Marcel Dekker, INC., New York, pp. 753-792 & 860-891.
    Schofield, R. K., and Samson, H. R. (1954), “Flocculation of kaolinite due to the attraction of oppositely charged crystal faces”, Discussions of the Faraday Society 18, 135-145.
    Schulthess, C. P., and Tokunaga, S. (1996), “Adsorption isotherms of poly(vinyl alcohol) on silicon oxide”, Soil Science Society of Am. J. 60, 86-91.
    Séquaris, J. M., Decimavilla, S. C., and Ortega, J. A. C. (2002), “Polyvinylpyrrolidone adsorption and structural studies on homoionic Li-, Na-, K-, and Cs-montmorillonite colloidal suspensions”, Journal of Colloid and Interface Science 252, 93-101.
    Shalaby, M. N. (2004), “Role played by the head size of some non-ionic surfactants on their adsorption onto montmorillonite clay”, Polymer for Advanced Technologies 15, 533-538.
    Shaw, D. J. (1992), “Introduction to colloid and surface chemistry”, Oxford London Boston; Butterworth-Heinemann, pp.121-123.
    Shen, Y. H. (2001), “Preparations of organobentonite using nonionic surfactants”, Chemosphere 44, 989-995.
    Shen, Y. H. (2002), “Treatment of low-turbidity water by sweep coagulation using clay”, Separation Science and Technology 37(11), 2739-2744.
    shen, Y.H. (2004), “Phenol sorption by organoclays having different charge characteristics”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 232, 143-149.
    Sheng, G., and Boyd, S. A. (1998), “Relation of water and neutral organic compounds in the interlayers of mixed Ca/trimethylphenylammonium-smectites”, Clays and Clay Minerals 46(1), 10-17.
    Slade, P. G., and Gates, W. P. (2004), “The swelling of HDTMA smectites as influenced by their preparation and layer charges”, Applied Clay Science 25, 93-101.
    Smith, J. A., and Jaffé, P. R. (1991), “Comparison of tetrachlormethane sorption to an alkylammonium-clay and an alkyldiammonium-clay”, Environ. Sci. Technol. 25, 2054-2058.
    Smith, J. A., Jaffe, P. R., and Chiou, C. T. (1990), “Effect of ten quaternary ammounium cations on tetrahloromethane sorption to clay from water”, Environmental Science & Technology 24, 1167-1172.
    Smith, J. A. and Galan, A. (1995), “Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water”, Environ. Sci. Technol. 29, 685-692.
    Sonon, L. S. and Thompson, M. L. (2005), “Sorption of a nonionic polyoxyethylene lauryl ether surfactant by 2:1 layer silicates”, Clays and Clay Mineral 53(1), 45-54.
    Strawhecker, K. E., and Manias, E. (2000), “Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites”, Chem. Mater. 12, 2943-2949.
    Stanley, D. A., and Scheiner, B. J., (1985), “Mechanically induced dewatering of ion-exchanged attapulgite flocculated by a high-molecular-weight polymer”, Colloids and Surfaces 14, 151-159.
    Stevens, J. J. and Anderson, S. J. (1996), “Orientation of trimethylphenylammonium (TMPA) on Wyoming monmorillonite: implications for sorption of aromatic compounds”, Clays and Clay Minerals 44(1), 132-141.
    Suzuki, J., Horio, M., Masuda, H., and Mori, T. (1992), “Adsorptive properties of swelling clays for polyvinyl alcohol”, The Clay Science Society of Japan 32, 36-41.
    Taylor, R. K. (1985), “Cation exchange in clays and mudrocks by methylene blue”, J. Chem. Tech. Biotechnol 35A, 195-207.
    Theng, B.K.G. (1982), “Clay-polymer interactions: summary and perspectives”, Clays Clay Minerals, 30(1), 1-10.
    Vaia, R. A., Sauer, B. B., Tse, O. K., and Giannelis, E. P. (1997), “Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly(ethylene oxide) intercalated in montmorillonite”, Journal of Polymer Science: Part B: Polymer Physics 35, 59-67.
    Varfolomeeva, E. K., and Zgadzai, L. K. (1974), “Ir spectroscopic study of the interaction of montmorillonite with polyvinyl alcohol”, Colloid Journal of the Russian Academy of Sciences 36, 950-953.
    Viseras, C., and Lopez-Galindo, A. (1999), “Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies”, Applied Clay Science 14, 69-82.
    Vantelon, D., Pelletier, M., Michot, L. J., Barres, O., and Thomas, F. (2001), “Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region”, Clay Minerals 36, 369-379.
    Williams, J., Purnell, J. H., and Ballantine, J. A. (1991), “The mechanism of layer charge reduction and regeneration in Li+-exchanged montmorillonite”, Catalysis Letters 9, 115-120.
    Xu, W., Johnston, C. T., Parker, P., and Agnew, S. F. (2000), “Infrared study of water sorption on Na-, Li-, Ca, and Mg-exchanged (SWy-1 and SAz-1) montmorillonite”, Clays and Clay Minerals 48(1), 120-131.
    Yalçın, T., Alemdar, A., Ece, Ö. I., and Güngör, N. (2002), “The viscosity and zeta potential of bentonite dispersions in presence of anionic surfactants”, Materials Letters 57, 420-424.
    Yeh, J.T., Xu, P., and Tsai, F. C. (2007), “Blending properties of poly(vinyl alcohol) and nylon 6-clay nanocomposite blends”, Journal of Materials Science 42, 6590-6599.
    Yu, Y. H., Lin, C. Y., Yeh, J. M., and Lin, W. H. (2003), “Preparation and properties of poly(vinyl alcohol)-clay nanocomposite materials”, Polymer 44, 3553-3560.
    Yuan, J., and Murray, H. H. (1997), “The importance of crystal morphology o the viscosity of concentrated suspensions of kalins”, Applied Clay Science 12, 209-219.
    Yuang, P. C., and Shen, Y. H. (2005), “Determination of the surface area of smectite in water by ethylene oxide chain adsoption”, Journal of Colloid and Interface Science 285, 443-447.
    Zemanová, M., Link, G., Takayama, S., Nüesch, R., Janek, M. (2006), “Modification of layer charge in smectites by microwaves”, Applied Clay Science 32, 71-282. Zhao, X., Urano, K., and Ogasawara, S. (1989), “Adsorption of polyethylene glycol from aqueous solution on montmorillonite clays”, Colloid and Polymer Science 267 (10), 899-906.

    下載圖示 校內:立即公開
    校外:2009-07-13公開
    QR CODE