| 研究生: |
黃馨萱 Huang, Hsin-Husan |
|---|---|
| 論文名稱: |
氧化鋅基陽極緩衝層與白光/紅光有機發光元件之開發 Developments of ZnO-Based Anode Buffer Layer and White/Red Emission Organic Light-Emitting Devices |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 有機發光二極體 、氧化鋅 、緩衝層 、白光 、紅光 |
| 外文關鍵詞: | OLED, ZnO, buffer layer, white emission, red emission |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體被認為是目前有機會作為大面積、全彩,平面化顯示器之元件,由於它具有一些優點如:製程簡易和應用便利等。因此,許多研究探討改善其元件結構之及了解其操作機制。
在本研究中,首先,我們報告以鋰、鎂金屬摻雜氧化鋅作為具簡單雙層結構有機發光二極體(OLED)之陽極緩衝層在其光電特性上的優勢。鋰、鎂金屬摻雜氧化鋅粉末以固態化學法製備,不同膜厚的鋰、鎂金屬摻雜氧化鋅膜則是用鋰、鎂金屬摻雜氧化鋅粉末以熱蒸鍍方式結合紫外線臭氧處理形成。當極薄的鋰、鎂金屬摻雜氧化鋅被置入在氧化銦錫陽極和NPB電洞傳輸層之間時,增益了有機發光二極體的光電特性,例如起始電壓下降,最大亮度與功率效率增加。利用X射線和紫外線光電子光譜儀測量顯示鋰、鎂金屬摻雜氧化鋅膜的組成及以紫外線臭氧處理後,鋰、鎂金屬摻雜氧化鋅/ITO膜的功函數會增加。再者,鋰、鎂金屬摻雜氧化鋅/ITO膜的表面在紫外線臭氧處理後會變得較平滑。因此,有機發光二極體的電洞注入能障在置入一金屬摻雜氧化鋅緩衝層後降低,使得元件的光電特性更好些。
其次,我們分別使用螢光型與燐光型發光摻雜物製備具單層發光結構的明亮白光與紅光有機發光二極體。明亮白光有機發光二極體之結構為ITO/NPB:Rubrene/BCP/Alq3/LiF/Al,其中NPB 是一藍光主發光體,Rubrene 是一黃光客發光體。 摻雜Rubrene濃度為2﹪的有機發光二極體可以發出白光,其最大亮度是13550 cd/m2 ,效率是 2.8 lm/W (7.9 cd/A) 。此外,元件放出之白光皆落在CIE座標的白光區,當操作電壓從6 V 到 14 V時 ,其座標由(0.35, 0.37) 移動到 (0.33, 0.35)。另一方面,高效率磷光型紅光有機發光二極體以新型紅光銥金屬錯合物Bis[7-methyl-1-p-tolyisoquinolinato-N,C2’]-iridium(III)(acetylacetonate) [(7-mtiq)2Ir(acac)]摻雜入一電洞阻擋材料4-biphenyloxolatoaluminum(III)bis(2-methyl-8-quinolinato) 4-phenyl phenolate(BAlq)製作得到。從BAlq 有效能量轉移到(7-mtiq)2Ir (acac)和在紅光摻雜物中注入載子直接結合之兩個激發路徑可以解釋元件的電致發光特性。元件放光之CIE座標 (0.66, 0.34) 非常接近於NTSC 標準紅光(0.66, 0.33)。而摻雜濃度約為4%的元件可以得到最大亮度31317 cd/m2 及發光效率 21.6 cd/A 。
Organic light-emitting diodes (OLEDs) are currently considered as promising candidates for large-area, full-color and flat-panel displays due to their prominent advantages such as easy fabrication and convenient use in applications. A lot of effort has, therefore, been made to improve device structures and to understand their operating mechanisms.
In this research, firstly, we report on the advantages of using Li- (or Mg-) doped zinc-oxide (ZnO) as an anode buffer layer on the electro-optical properties of organic light-emitting diodes (OLEDs) with a simple bilayer structure. The Li- (or Mg-) doped ZnO powders were prepared by solid-state reaction method and Li- (or Mg-) doped ZnO buffer layers were prepared by thermally evaporating method combined with the ultraviolet (UV) ozone exposure treatment. When an ultra-thin Li- (or Mg-) doped ZnO buffer layer was inserted between indium-tin oxide (ITO) anode and N,N’-bis-(1-naphthyl)- N,N’- diphenyl-1,1’-biphenyl-4,4’-diamine (NPB) hole-transporting layer, the electro-optical properties of OLEDs were improverd, such as the decreased turn-on voltage, the increased luminance and power efficiency. X-ray and ultraviolet photoelectron spectroscopies were performed to show that the formation of the Li- (or Mg-) doped ZnO layer and the increase of the work function when the Li- (or Mg-) doped ZnO/ITO layers were treated by UV-ozone. Furthemore, the surface of the Li- (or Mg-) doped ZnO/ITO films became smoother after the UV-ozone treatment. Thus, the hole-injection energy barrier of OLEDs was lowered by inserting an Li- (or Mg-) doped ZnO buffer layer, resulting in the better electro-optical properties in OLEDs.
Secondly, we used the fluorescent and phosphorescent emittor dopants, respectively, to demonstrate the bright white and red emission OLEDs with a simple emitting layer structure. Bright white emission OLEDs with a structure of ITO/NPB: 5,6,11,12-tetraphenylnaphthacene(NPB:Rubrene)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)/tris(8-hydroxy quinoline) aluminum (Alq3)/ Lithium fluoride (LiF)/Al were fabricated, where NPB is a blue-emitting host and Rubrene is a yellow-emitting dopant. White light emission with a maximum luminance of 13550 cd/m2 and a power efficiency of 2.8 lm/W (7.9 cd/A) was achieved in an OLED with 2 % Rubrene doping concentration. Moreover, the Commission Internationale De L’Eclairage (CIE) (1931) coordinates of the white emission was well within the white zone, which moves slightly from (0.35, 0.37) to (0.33, 0.35) when the applied voltage is varied from 6 V to 14 V. On the other hand, high-efficiencent red electrophosphorescent OLEDs were fabricated by doping a novel red-emitting iridium complex, Bis[7-methyl-1-p-tolyisoquinolinato-N,C2’]-iridium(III)(acetylacetonate) [(7-mtiq)2Ir (acac)], into a hole-blocking material, 4-biphenyloxolato aluminum(III) bis(2-methyl-8-quinolinato)4-phenylphenolate (BAlq). Two excitaion paths consisting of the efficient energy transfer from BAlq host to (7-mtiq)2Ir (acac) and the direct recombination of the injected carriers at the red dopant sites should be considerd to explain the electroluminescence characterisitcs. The CIE coordinates of (0.66, 0.34) was very close to the National Television System Committee (NTSC) standard red point (0.66, 0.33). With a dopant concentration of about 4%, a maximum luminance of 31317 cd/m2 and a luminous efficiency of 21.6 cd/A were obtained.
[1] S. R. Forrest, Chem. Rev. (Washington, D.C.), 97, 1793 (1997).
[2] F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, Appl. Phys. Lett., 70, 2741
(1997).
[3] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, and H. Aziz, Appl. Phys. Lett., 78, 2595 (2001).
[4] S. T. Lee, Z. Q. Gao, and L. S. Hung, Appl. Phys. Lett., 75, 1404 (1999).
[5] A. R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M. Klapwijk, and G. Hadziioannou, Appl. Phys. Lett., 69, 1764 (1996).
[6] S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).
[7] Y. Kurosaka, N. Tada, Y. Ohmori, and K. Yoshino, Jpn. J. Appl. Phys., Part 1, 37, L872 (1998).
[8] W. Hu, K. Manabe, T. Furukawa, and M. Matsumura, Appl. Phys. Lett., 80, 2640 (2002).
[9] C. F. Qiu, H. Y. Chen, Z. L. Xie, M. Wong, and H. S. Kwok, Appl. Phys. Lett., 80, 3485 (2002).
[10] S. Y. Kim, J. -L. Lee, K. -B. Kim, and Y. -H. Tak, Appl. Phys. Lett., 86, 133504 (2005).
[11] C. M. Hsu and W. T. Wu, Appl. Phys. Lett., 85, 840 (2004).
[12] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park, Appl. Phys. Lett., 83, 63 (2003).
[13] H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and
D. B. Chrisey, Thin Solid Films, 377–378, 798 (2000).
[14] H. Kim, J. S. Horwitz, W. H. Kim, A. J. Mäkinen, Z. H. Kafafi, and D. B. Chrisey, Thin Solid Films, 420–421, 539 (2002).
[15] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R.
Schlaf, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett., 76, 259 (2000).
[16] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett., 83, 1875
(2003).
[17] H. Kim, J. S. Horwitz, W. H. Kim, S. B. Qadri, and Z. H. Kafafi, Appl. Phys. Lett., 83, 3809 (2003).
[18] W. Water, S. Y. Chu, Y. D. Juang, and S. J. Wu, Mater. Lett., 57, 998 (2002).
[19] S. Fujihara, C. Sasaki, T. Kimura, J. Eur. Ceram. Soc. 21, 2109 (2001).
[20] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, Appl. Phys. Lett. 78, 1266 (2001).
[21] C. Adachi, M.A. Baldo, S.R. Forrest, Appl. Phys. Lett. 77 , 904 (2000).
[22] M.T. Lee, C.H. Liao, C.H.Tsai, C. H. Chen, Adv. Mater. 17 , 2493 (2005).
[23] S. Miyagychi, S. Ishizuka, T. Wakimoto, J. Funaki, Abstracts 9th Int. Workshop on Inorganic and Organic EL, 1998, p. 137.
[24] Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, K. Shibata, Jpn. J. Appl. Phys. 32, L511 (1993).
[25] S. Tokito, J. Takata, Y. Taga, J. Appl. Phys. 77, 1985 (1995).
[26] Z.L. Zhang, X.Y. Jiang,W.Q. Zhu, B.X. Zhang, S.H. Xu, J. Phys., D. Appl. Phys. 34, 3083 (2001).
[27] X.Y. Zheng,W.Q. Zhu, Y.Z.Wu, X.Y. Jiang, R.G. Sun, Z.L. Zhang, S.H. Xu, Displays 24, 121 (2003).
[28] G. Li, J. Shinar, Appl. Phys. Lett. 83, 5359 (2003).
[29] J. Kido, M. Kimura, K. Nagai, Science 267, 1332 (1995).
[30] J. Kido, W. Ikeda, M. Kimura, K. Nagai, Jpn. J. Appl. Phys. 35, L394 (1996).
[31] A. Dodabalapur, L.J. Rothberg, T.M. Miller, Appl. Phys. Lett. 65, 2308 (1994).
[32] R.S. Deshpande, V. Bulovic, S.R. Forrest, Appl. Phys. Lett. 75, 888 (1999).
[33] B.W.D. Andrade, M.E. Thompson, S.R. Forrest, Adv. Mater. 14 , 147 (2002).
[34] C.-H. Kim, J. Shinar, Appl. Phys. Lett. 80, 2201 (2002).
[35] S. Tokito, T. Iijima, T. Tsuzuki, F.Sato, Appl. Phys. Lett. 83 , 2459 (2003).
[36] C. C.Chang, S.W. Hwang, C.H. Chen, J.F. Chen, Jpn. J. Appl. Phys. 43, 6418 (2004).
[37] D. Qina, Y. Tao, Appl. Phys. Lett. 86, 113507 (2005).
[38] C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
[39] M.A. Baldo, D.F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Nature (London) 395 , 151 (1998).
[40] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, S.T. Lee, Appl. Phys. Lett. 82, 4224 (2003).
[41] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, J. Shen, Appl. Phys. Lett. 83, 4716 (2003).
[42] T. Tsuzuki, N. Shirasawa, T. Suzuki, S. Tokito, Adv. Mater. 15, 1455 (2003).
[43] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
[44] C. Adachi, M.A. Baldo, S.R. Forrest, S. Lamansky, M.E. Thompson, R.C. Kwong, Appl. Phys. Lett. 78,1622 (2001).
[45] C. Adachi, R. Kwong, S.R. Forrest, Org. Electron 2, 37 (2001).
[46] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, F. Sato, Appl. Phys. Lett. 83 , 569 (2003).
[47] M.A. Baldo, S.R. Forrest, Phys. Rev. B 62, 10958 (2000).
[48] M.A. Baldo, C. Adachi, S.R. Forrest, Phys. Rev. B 62, 10967 (2000).
[49] C.H. Yang, C.C. Tai, I.W. Sun, J. Mater. Chem. 14, 947 (2004).
[50] P. Coppo, E.A. Plummer, L. De Cola, Chem. Commun. 15, 1774 (2004).
[51] S. Kawami, K. Nakamura, T.Wakimoto, T. Miyaguchi, T.Watanabe, Pioneer R & D 11 , 13 (2000) (in Japanese).
[52] S. Tokito, T. Iijima, T. Tsuzuki, F. Sato, Appl. Phys. Lett. 83 , 2459 (2003).
[53] T. Tsuji, S. Kawami, S. Miyaguchi, T. Naijo, T. Yuki, S. Matsuo, H. Miyazaki, SID Symposium Digest of Technical Papers, vol. 35, , p. 900 (2004).
[54] T.H. Liu, S.F. Hsu, M.H. Ho, C.H. Liao, Y.S. Wu, C.H. Chen, Y.L. Tung, P.C. Wu, Y. Chi, Appl. Phys. Lett. 88, 063508 (2006).
[55] C. Adachi, T. Tsutsui and S. Saito, Optoelectron. Devices Technol. 6, 25. (1991).
[56] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R.Forrest, Appl. Phys. Lett. 75, 4 (1994).
[57] L.J. Rothberg and Andrew J. Lovinger, J. Mater. Res. 11, 3174 (1996).
[58] S. A. Chen and T.C. Kuo, thesis of Tsing Hua university, (1999) (in Taiwan).
[59] M. A. Baldo, D. F. O. Brien, M. E. Thompson, and S. R. Forrest, Phys. Rev. B, 60, 14422 (1999).
[60] M. A. Baldo, D. F. O. Brien, Y. You, A. Shoustikvo, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151 (1998).
[61] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature, 430 ,750 (2000).
[62] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, Appl. Phys. Lett. 84, 2913 (2004).
[63] K. Ihm, T. H. Kang, K. J. Kim, C. C. Hwang, Y. J. Park , K. B. Lee , B. Kim, C. H. Jeon , C. Y. Park, K. Kim and Y. H. Tak Appl. Phys. Lett. 83 ,2949 (2003).
[64] T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Appl. Phys. Lett. 73, 2763 (1998).
[65] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi,
and K. Seki, J. Appl. Phys. 83, 4928 (1998).
[66] Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Jpn. J.
Appl. Phys., Part 2 32, L514 (1993).
[67] A. Schmidt, M. L. Anderson, and N. R. Armstrong, J. Appl. Phys. 78, 5619 (1995).
[68] U. Rossler,, Landolt-Bornstein, New Series, Group III. Vol. 17B, 22, 41B. Springer, Heidelberg (1999).
[69] Ü. Özgür, Alivov, Y. I.; Liu, C. Teke, A. Reshchikov, M. A.; Doğan, S.;Avrutin, V. Cho, J. Appl. Phys. 98, 041301 (2005).
[70] D. C. Look, J. W. Hemsky, J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).
[71] A. Janotti, V. D. Walle, C. G.; C. G. Walle,. Nat. Mater. 6, 44 (2007).
[72] H. Kato, J. Crys. Grow. 237-239, 538 (2002).
[73] P. Wagner, R. Helbig, J. Phys. Chem. Sol. 35, 327(1974).
[74] Y. R. Ryu, T. S. Lee, H. W. White, , Appl. Phys. Lett. 83, 87 (2003).
[75] B. Y. Oh; M. C. Jeong, T. H. Moon, W. Lee, J. M. Myoung, J. Y. Hwang, D. S. Seo,. J. Appl. Phys. 99, 124505 (2006).
[76] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003).
[77] Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, S. J. Pearton, B. S. Kang, F. Ren, Appl. Phys. Lett. 85, 2274 (2004).
[78] L. Chkoda, C. Heske, M. Sokolowski, E.Umbach, F. Steuber, J. Staudigel, M. Stoβel, J. Simmerer, Synth. Met. 111, 315 (2000).
[79] H.K. Kim, K.S. Lee, H.A. Kang, J. Electrochem. Soc. 153, H29 (2006).
[80] D.L. Raimondi, E. Kay, J. Vac. Sci. Technol. 7, 96 (1969).
[81] M. Sano, T. Adaniya, T. Fujitani, J. Nakamura, Surf. Sci. 514, 261 (2002).
[82] J.C.C. Fan, J.B. Goodenough, J. Appl. Phys. 48 , 3524 (1977).
[83] S.Y. Kim, J.-L. Lee, K.-B. Kim, Y.-H. Tak, J. Appl. Phys. 95, 2560 (2004).
[84] S.T. Zhang, Z.J.Wang, J.M. Zhao, Y.Q. Zhan, Y.Wu, Y.C. Zhou, X.M. Ding, X.Y. Hou, Appl. Phys. Lett. 84, 2916 (2004).
[85] S. Shi, D. Ma, Appl. Surf. Sci. 252 , 6337 (2006).
[86] K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, K. Shibata, Appl. Phys. Lett. 89, 013502 (2006).
[87] H. M. Wang, M. C. Simmonds, and J. M. Rodenburg, Mater. Chem. Phys., 77, 802 (2002).
[88] D.K. Aswal, K.P. Muthe, Shilpa Tawde, Sipra Chodhury, N. Bagkar, Ajay
Singh, S.K. Gupta, J.V. Yakhmi, J. Cryst. Growth 236 , 661 (2002).
[89] K.A. King, P.J. Spellane, R.J. Wattes, J. Am. Chem. Soc. 107, 1431 (1985).
[90] M.G. Colombo, T.C. Brunold, T. Riedener, H.U. Gudel, M. Fortsch, H.B. Burgi, Inorg. Chem. 33, 545 (1994).
[91] C.L. Lee, Y.J. Su, Y.T. Tao, P.T. Chou, C.H. Chien, C.C. Cheng, R.S. Liu, Adv. Funct. Mater. 15, 387 (2005).
[92] T. Itoh, T. Mizutani, T. Mori, Colloids Surf. A 284/285, 594 (2006).
[93] T. Förster, Discuss. Faraday Soc. 27, 7 (1959).
[94] Y.S. Yao, Q.X. Zhou, X.S.Wang, Y.Wang, B.W. Zhang, J. Mater. Chem.16 , 3512 (2006).
[95] E.G. Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, J.M. Nunzi, J. Appl. Phys. 83, 4236 (1998).
[96] H. Murata, C.D. Merritt, Z.H. Kafafi, IEEE J. Sel. Top. Quantum Electron. 4 , 119 (1998).
[97] C. Qiu, Z. Xie, H. Chen, B.Z. Tang, M. Wong, H.S. Kwok, IEEE J. Sel. Top. Quantum Electron. 10, 101 (2004).
[98] F. Nuesch, D. Berner, E. Tutis, M. Schaer, C. Ma, X.Wang, B. Zhang, L. Zuppiroli, Adv. Funct. Mater. 15, 323 (2005).
[99] W. Hu, K. Manabe, T.Furukawa, and M. Matsumura, Appl. Phys. Lett. 80, 2640 (2002).
[100] I-Min Chan, Tsung-Yi Hsu, and Franklin C. Hong, Appl. Phys. Lett. 81, 1899 (2002).
[101] C. Qiu, H. Chen, Z. Xie, M. Wong, and H. S. Kwok, Appl. Phys.Lett. 80, 3485 (2002).
[102] C.W. Chen, P.Y. Hsieh, H.H. Chiang, C.L. Lin, H.M. Wu, and C.C. Wu , Appl. Phys. Lett. 83, 5127 (2003).
[103] L. Hou , P. Liu, Y. Li, C. Wu, Thin Solid Films 517, 4926 (2009).
[104] Z. B. Deng and X. M. Ding, S. T. Lee, W. A. Gambling, Appl. Phys. Lett. 74, 2227 (1999).
[105] H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys. 101, 026105 (2007).
[106] J. Meyer, S. Hamwi, T. Bülow, H.-H. Johannes, T. Riedl, and W. Kowalsky , Appl. Phys. Lett. 91, 113506 (2007).
[107] D.S. Leem, H.D. Park, J.W. Kang, J.H. Lee, J. W. Kim, and J.J. Kim , Appl. Phys. Lett. 91, 011113 (2007).
[108] S.S. Yap, T.K. Yong, T.Y. Tou, Thin Solid Films 517, 5311 (2009).
[109] H.T. Lu, M. Yokoyama, Solid State Elec. 47, 1409 (2003).
[110] F.L. Wong, M.Y. Chan, S.L. Lai, M.K. Fung, K.H. Lai, W.M. Tsang, T.W. Ng, C.O Poon, C.S. Lee, S.T. Lee, Thin Solid Films 516, 8195 (2008).
[111] H. Jiang, Y. Zhou, B. S. Ooi, Y. Chen, T. Wee, Y. L. Lam, J. Huang, S. Liu, Thin Solid Films 363, 25 (2000).
[112] Y. Kurosaka, N. Tada, Y. Ohmori and K. Yoshino, Synthetic Metels 102, 1101 (1999).
[113] D.D. Zhang, J. Feng, Y.F. Liu, Y.Q. Zhong, Y. Bai, Y. Jin, G.H. Xie, Q. Xue, Y. Zhao, S.Y. Liu, and H.B. Sun, Appl. Phys. Lett. 94, 223306 (2009).
[114] C.W. Chen, P.Y. Hsieh, H.H. Chiang, C.L. Lin, H.Mi. Wu, and C.C. Wu, Appl. Phys. Lett. 83, 5127 (2003).
[115] X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, Appl. Phys. Lett. 87, 153508 (2005).
[116] Z. Liu, Z. Bian, F. Hao, D. Nie, F. Ding, Z. Chen, and C. Huang, Org.
Electron. 10, 247 (2009).
[117] C. H. Wu, P. I. Shih, C. F. Shu, and Y. Chi, Appl. Phys. Lett. 92, 233303
(2008).
[118] C. H. Chien, F. M. Hsu, C. F. Shu, Y. Chi, Org. Electron. 10, 871 (2009).
[119] W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang, and J. H. Kwona, Org.
Electron. 10, 240 (2009).
[120] Y. L. Tung, S. W. Lee, Y. Chi, Y. T. Tao, C. H. Chien, Y. M. Cheng, P. T.
Chou, S. M. Peng, and C. S. Liu, J. Mater. Chem. 15, 460 (2005).
[121] Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin, and D. Ma,
Angew. Chem., Int. Ed. 47, 8104 (2008).