| 研究生: |
李宗勳 Lee, Tsong-Shing |
|---|---|
| 論文名稱: |
兼具無線電能傳輸輔助之壓電變壓器與諧振電路設計研究 A Study of Piezoelectric Transformers and Resonance Circuit Design Aided with Wireless Power Transfer Capability |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 無線電力傳輸 、頻率追蹤 、感應線圈設計 、電漿驅動電路 、壓電變壓器 、諧振電路 、回授機制 |
| 外文關鍵詞: | wireless power transfer, frequency-tracking, inductive coil design, plasma-driven circuit, piezoelectric transformer, resonant circuit, feedback mechanism |
| 相關次數: | 點閱:165 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伴隨科技進步,無線電能傳輸系統之不需與電極接觸的優點已漸被應用於電力傳輸及能量轉換裝置,而採用高壓電源激發電漿於清潔殺菌應用之概念,並已被工業界與家庭生活採用。因此,本論文主旨即在於研究無線電能傳輸系統於高壓電能轉換器應用,並針對所提之控制策略、回授機制、諧振架構與應用方法,予以深入分析探討。
本論文首先探討感應線圈之磁場耦合傳遞電能效率改善,並分析線圈距離改變與接收端負載阻抗變動時之電能轉換器輸出特性變化,進而藉由檢視諧振補償電路架構,整合提出適於本系統之操作頻率追蹤與回授機制。此外,由於感應線圈設計於無線電能傳輸中,扮演重要角色,因此在本論文研究中,已經由系統化設計概念提出一套感應線圈製作流程,將可隨著不同系統功率、傳輸距離、與線圈耦合之不同應用條件,妥善計算所需之感應線圈設計值。而由理論分析、數學運算模型建立、與硬體實作顯示本論文所提方法將可主動修正操作頻率以提昇電能傳輸效率與輸出穩定性,且所設計之感應線圈與諧振補償電路均能無線傳遞所需功率與達到柔性切換,確有助於無線電能傳輸相關應用領域之效能提昇參考。
其次,本論文考量電漿載子驅動電路中,電能轉換器常需仰賴龐大的磁性電感與電容作為諧振元件以產生高壓電源,而複雜的諧振電路設計與回授裝置則將影響運轉效能,致使侷限電漿載子驅動電路的開發競爭力。因此,本論文針對電漿驅動研究提出一整合壓電變壓器諧振電路之高壓電能轉換器,同時採用壓電變壓器以實現高壓諧振電路架構,不僅取代傳統磁性元件使用,並可達到模組化彈性擴充之優點。此方法經系統分析與實驗證實有效提高輸出電壓,符合激發電漿放電需求,有助於縮小電路體積與精簡諧振電路設計。
再者,為了增廣與延伸無線電能傳輸系統於高壓電能轉換器之應用領域,本論文融入一無線充電系統雛型,其所探討的操作頻率校正方法與直流轉換器之補償器優化設計,足以提供傳輸功率與穩定輸出電源供應至後級電漿驅動電路,另在此電路中加入電池模組充放電機制,以有助於所設計之系統具有備用電源與可攜式功能。綜由上述研究課題之控制策略與系統架構擬定,本論文所設計之整體電路系統具備電氣隔離與電極絕緣等安全性之優點,並兼備精簡化電路設計優勢。此論文研究成果兼可做為工業等級電漿驅動系統之商品開發與設計參考。
With a progress of technology, the merits of wireless energy transfer system is increasingly applied and witnessed in power transmission and energy conversion devices. In the mean time, the concept of plasma discharging through the firing of high-voltage source for cleaning and sterilization is widely adopted in industries and families. Therefore, this dissertation is aimed to investigate the application of wireless power transfer for high-voltage power converter applications, where the frequency-tracking control, the feedback mechanism, the resonant topology, and the design process are also included.
The thesis starts with the improvement of wireless power delivers, in which the inductive coil magnetic coupling and distance change that affecting the transmission efficiency are both analyzed. This is followed by the investigation of the resonance compensation structure and parameters, by which the feedback mechanism of phase-loop locked strategy is implemented to achieve the frequency-tracking of the system. Next, considering that the inductive coil design plays a critical role in the wireless power transfer, the dissertation proposes a manufacturing process and design approach, where the suitable values of coil for the applications under different source power, transmission gaps, and coupling coefficients can be calculated with ease. To verify the feasibility of this system, theoretical analyses are made and mathematical models are formulated along with hardware realizations. Test results indicate that the proposed method can adjust the operating frequency to promote the power transmission efficiency while the output voltage can be well stabilized. The coil design and resonance circuits suggested in this dissertation also ensure that the expected amount of power can be transferred in a wireless way, and the soft-switching is fulfilled. These outcomes are served as useful references for wireless power transfer applications.
Subsequently, in consideration of the plasma-driven circuit often employs the bulky magnetic inductors and capacitors as resonant elements to induce the high voltage, these complex circuit designs along with feedback device would affect the operating performance, restricting the industry competition for a further circuit development. Hence, this dissertation proposes a power converter with PT-based resonant architectures to replace conventional inductor-capacitor resonant tanks. The modular capacity operation made in this study helps increase the output power along with a higher flexibility. Experimental results indicate that the output voltage can be effectively increased to achieve the goal of plasma discharging, while the dimension of driving circuit is reduced and the resonant circuit design is simplified.
Next, in order to widely extend the application fields of wireless power transfer system for high-voltage power converters, this dissertation proposes a prototype design of contactless charging system platform. The dissertation includes an operating frequency correction method and a compensator design of converters such that sufficient amount of power can be supplied and the output voltage can be maintained for plasma-driven circuits. In addition, the circuit has added a battery module to reach the requirement of a portable plasma generator. Conclusively, from all of control strategies and system architectures proposed in this dissertation, the overall circuit system is seen to possess the merits of electrical isolation and electrode insulation, while the design process can be largely simplified. The research results gained from this dissertation can be also served as the reference of industrial design and development for plasma-driven systems.
Keywords: wireless power transfer, frequency-tracking, inductive coil design, plasma-driven circuit, piezoelectric transformer, resonant circuit, feedback mechanism.
[1] J. S. Jung and J. D. Moon, “Effective Ozone Generation with A Wire-Wire-Type Nonthermal Plasma Reactor with A Slit Barrier,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1391-1396, September/October 2008.
[2] J. M. Kwon, W. Y. Choi, and B. H. Kwon, “Single-Stage Quasi-Resonant Flyback Converter for a Cost-Effective PDP Sustain Power Module,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2372-2377, June 2011.
[3] J. M. Alonso, C. Ordiz, M. A. Dalla, J. Ribas, and J. Cardesin, “High-Voltage Power Supply for Ozone Generation Based on Piezoelectric Transformer,” IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 1513-1523, July 2009.
[4] M. Amjad, Z. Salam, M. Facta, and S. Mekhilef, “Analysis and Implementation of Transformerless LCL Resonant Power Supply for Ozone Generation,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 650-660, February 2013.
[5] F. S. Pai, C. L. Ou, and S. J. Huang, “Plasma-Driven System Circuit Design with Asymmetrical Pulse Width Modulation Scheme,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4167-4174, September 2011.
[6] Information Technology Equipment – Safety – Part 1: General Requirements, IEC 60950-1, Edition 2.0, 2009-12.
[7] J. J. Casanova, Z. N. Low, and J. Lin, “A Loosely Coupled Planar Wireless Power System for Multiple Receivers,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3060-3068, August 2009.
[8] H. Matsumoto, Y. Neba, H. Iura, D. Tsutsumi, K. Ishizaka, and R. Itoh, “Trifoliate Three-Phase Contactless Power Transformer in Case of Winding-Alignment,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 53-62, January 2014.
[9] G. A. J. Elliott, S. Raabe, G. A. Covic, and J. T. Boys, “Multiphase Pickups for Large Lateral Tolerance Contactless Power-Transfer Systems,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1590-1598, May 2010.
[10] A. J. Moradewicz and M. P. Kazmierkowski, “Contactless Energy Transfer System with FPGA-Controlled Resonant Converter,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3181-3190, September 2010.
[11] X. Dai and Y. Sun, “An Accurate Frequency Tracking Method Based on Short Current Detection for Inductive Power Transfer System,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 776-783, February 2014.
[12] W. X. Zhong, C. K. Lee, and S. Y. R. Hui, “General Analysis on the Use of Tesla's Resonators in Domino Forms for Wireless Power Transfer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 261-270, January 2013.
[13] D. Kürschner, C. Rathge, and U. Jumar, “Design Methodology for High Efficient Inductive Power Transfer Systems with High Coil Positioning Flexibility,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 372-381, January 2013.
[14] J. L. Villa, J. Sallán, J. F. S. Osorio, and A. Llombart, “High-Misalignment Tolerant Compensation Topology for ICPT Systems,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945-951, February 2012.
[15] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer System,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, February 2004.
[16] Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1801-1812, May 2009.
[17] W. Huang, D. Chen, E. M. Baker, J. Zhou, H. I. Hsieh, and F. C. Lee, “Design of a Power Piezoelectric Transformer for a PFC Electronic Ballast,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3197-3204, December 2007.
[18] R. L. Lin, H. M. Shih, C. Y. Liu, and K. B. Liu, “A Family of Piezoelectric-Transformer-Based Bridgeless Continuous Conduction-Mode Charge-Pump Power-Factor-Correction Electronic Ballasts,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1149-1158, May/June 2011.
[19] Y. K. Lo and K. J. Pai, “Feedback Design of a Piezoelectric Transformer-Based Half-Bridge Resonant CCFL Inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2716-2723, August 2007.
[20] F. Pigache and C. Nadal, “Modeling and identification of Rosen-type Transformer in Nonlinear Behavior,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 12, pp. 2562-2570, December 2011.
[21] C. Nadal, F. Pigache, and Y. Lefevre, “First Approach for the Modeling of the Electric Field Surrounding a Piezoelectric Transformer in View of Plasma Generation,” IEEE Trans. Magn., vol. 48, no. 2, pp. 423-426, February 2012.
[22] E. L. Horsley, A. V. Carazo, N. N. Quang, M. P. Foster, and D. A. Stone, “Analysis of Inductorless Zero-Voltage-Switching Piezoelectric Transformer-Based Converter,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2471-2483, May 2012.
[23] G. S. Seo, J. W. Shin, and B. H. Cho, “A Magnetic Component-less Series Resonant Converter Using a Piezoelectric Transducer for Low Profile Application,” in Proc. Int. Conf. Power Electron., Sapporo, Japan, pp. 2810-2814, June 2010.
[24] Y. Yuanmao, K. W. Cheng, and K. Ding, “A Novel Method for Connecting Multiple Piezoelectric Transformer Converters and its Circuit Application,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1926-1935, April 2012.
[25] S. J. Huang, T. S. Lee, and T. H. Huang, “Inductive Power Transfer Systems for PT-based Ozone-Driven Circuit with Flexible Capacity Operation and Frequency-Tracking Mechanism,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6691-6699, December 2014.
[26] S. K. Ki and D. D. C. Lu, “A High Step-Down Transformerless Single-Stage Single-Switch AC/DC Converter,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 36-45, January 2013.
[27] A. Abramovitz and K. M. Smedley, “Analysis and Design of a Tapped-Inductor Buck-Boost PFC Rectifier with Low Bus Voltage,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2637-2649, September 2011.
[28] O. Laldin, M. Moshirvaziri, and O. Trescases, “Predictive Algorithm for Optimizing Power Flow in Hybrid Ultracapacitor / Battery Storage Systems for Light Electric Vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3882-3895, August 2013.
[29] W. X. Zhong, X. Liu, and S. Y. R. Hui, “A Novel Single-layer Winding Array and Receiver Coil Structure for Contactless Battery Charging System with Free-Positioning and Localized Charging Features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, September 2011.
[30] J. Sallán, J. L. Villa, A. Llombart, and J. F. Sanz, “Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2140-2149, June 2009.
[31] M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Huang, “Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, January 2013.
[32] U. K. Madawala, M. Neath, and D. J. Thrimawithana, “A Power-Frequency Controller for Bidirectional Inductive Power Transfer Systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 310-317, January 2013.
[33] D. J. Thrimawithana, U. K. Madawala, and M. Neath, “A Synchronization Technique for Bidirectional IPT Systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 301-309, January 2013.
[34] V. Kinnares and P. Hothongkham, “Circuit Analysis and Modeling of a Phase-Shifted Pulsewidth Modulation Full-Bridge-Inverter-Fed Ozone Generator with Constant Applied Electrode Voltage,” IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1739-1752, July 2010.
[35] S. H. Lee and R. D. Lorenz, “Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2495-2504, November 2011.
[36] M. Kline, I. Izyumin, B. Boser, and S. Sanders, “Capacitive Power Transfer for Contactless Charging,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Texas, USA, pp. 1398-1404, March 2011.
[37] J. U. William. Hsu, A. P. Hu, and A. Swain, “A Wireless Power Pickup Based on Directional Tuning Control of Magnetic Amplifier,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2771-2781, July 2009.
[38] O. H. Stielau and G. A. Covic, “Design of Loosely Coupled Inductive Power Transfer System,” in Proc. IEEE Int. Conf. Power Syst. Technol., Perth, WA, vol. 1, pp. 85-90, August 2002.
[39] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, July 2009.
[40] S. Valtchev, B. Borges, K. Brandisky, and J. B. Klaassens, “Resonant Contactless Energy Transfer With Improved Efficiency,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 685-699, March 2009.
[41] C. S. Tang, Y. Sun, Y. G. Su, S. K. Nguang, and A. P. Hu, “Determining Multiple Steady-State ZCS Operating Points of a Switch-Mode Contactless Power Transfer System,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 416-425, February 2009.
[42] S. J. Huang, T. S. Lee, F. S. Pai, and T. H. Huang, “Method of Feedback Detection for Loosely Coupled Inductive Power Transfer System with Frequency-Tracking Mechanism,” in Proc. IEEE Conf. Power Electron. Drive Syst., Kitakyushu, Japan, pp. 784-787, April 2013.
[43] P. Meyer, P. Germano, M. Markovic, and Y. Perriard, “Design of a Contactless Energy-Transfer System for Desktop Peripherals,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1643-1651, July/August 2011.
[44] S. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, “Circuit-Model-Based Analysis of a Wireless Energy-Transfer via Coupled Magnetic Resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906-2914, July 2011.
[45] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of Characteristics on Planar Contactless Power Transfer Systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[46] D. J. Thrimawithana and U. K. Madawala, “A Primary Side Controller for Inductive Power Transfer Systems,” in Proc. IEEE Conf. Ind. Technol., Vina del Mar, Chile, pp. 661-666, March 2010.
[47] C. K. Lee, W. X. Zhong, and S. Y. R. Hui, “Effects of Magnetic Coupling of Nonadjacent Resonators on Wireless Power Domino-Resonator Systems,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1905-1916, April 2012.
[48] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-Width Inductive Power Transfer System for Online Electrical Vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666-3679, December 2011.
[49] J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S. J. Jeon, and D. H. Cho, “Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1179-1192, March 2014.
[50] T. S. Chan and C. L. Chen , “LLC Resonant Converter for Wireless Energy Transmission System with PLL Control,” in Proc. IEEE Conf. Sustain. Energy Technol., Singapore, pp. 136-139, November 2008.
[51] T. H. Huynh, “A Modified Shuffled Frog Leaping Algorithm for Optimal Tuning of Multivariable PID Controllers,” in Proc. IEEE Int. Conf. Ind. Technol., Chengdu, China, pp. 1-6, April 2008.
[52] A. M. Kashtiban and M. A. Ahandani, “Various Strategies for Partitioning of Memeplexes in Shuffled Frog Leaping Algorithm,” in Proc. 14th Int. CSI Computer Conf., Tehran , Iran, pp. 576-581, October 2009.
[53] Z. Zhen, D. Wang, and Y. Liu, “Improved Shuffled Frog Leaping Algorithm for Continuous Optimization Problem,” in Proc. IEEE Congress on Evolutionary Comput., Trondheim, Norway, pp. 2992-2995, May 2009.
[54] S. Bronshtein, A. Abramovitz, A. Bronshtein, and I. Katz, “A Method for Parameter Extraction of Piezoelectric Transformers,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3395-3401, November 2011.
[55] S. Dong, A. V. Carazo, and S. H. Park, “Equivalent Circuit and Optimum Design of a Multilayer Laminated Piezoelectric Transformer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 12, pp. 2504-2515, December 2011.
[56] Y. H. Hsu, C. K. Lee, and W. H. Hsiao, “Electrical and Mechanical Fully Coupled Theory and Experimental Verification of Rosen-type Piezoelectric Transformers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 10, pp. 1829-1839, October 2005.
[57] S. J. Choi, K. C. Lee, and B. H. Cho, “Design of Fluorescent Lamp Ballast With PFC Using a Power Piezoelectric Transformer,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1573-1581, December 2005.
[58] M. C. Do and H. Guldner, “High Output Voltage DC/DC Converter Based on Parallel Connection of Piezoelectric Transformers,” in Proc. Int. Symp. Power Electron., Electr. Drives, Autom. Motion, Taormina, Italy, pp. 625-628, May 2006.
[59] W. C. Su and C. L. Chen, “ZVS for PT Backlight Inverter Utilizing High-Order Current Harmonic,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 4-10, January 2008.
[60] J. H. Park, B. H. Cho, S. J. Choi, and S. M. Lee, “Analysis of the Thermal Balance Characteristics for Multiple-Connected Piezoelectric Transformers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 8, pp. 1617-1626, August 2009.
[61] B. C. Kim, K. B. Park, and G. W. Moon, “Asymmetric PWM Control Scheme During Hold-Up Time for LLC Resonant Converter,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2992-2997, July 2012.
[62] M. Qiu, P. K. Jain, and H. Zhang, “Dynamic Performance of an APWM Resonant Inverter for High Frequency AC Power Distribution System,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1556-1563, November 2006.
[63] Z. Ye, P. K. Jain, and P. C. Sen, “A Two-Stage Resonant Inverter with Control of the Phase Angle and Magnitude of the Output Voltage,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2797-2812, October 2007.
[64] S. Y. Chen and J. J. Chen, “Study of the Effect and design criteria of the Input Filter for Buck Converters with Peak current-Mode Control Using a Novel system Block Diagram,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3159-3166, August 2008.
[65] M. Karppanen, J. Arminen, T. Suntio, K. Savela, and J. Simola, “Dynamical Modeling and Characterization of Peak-Current-Controlled Superbuck Converter,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1370-1380, May 2008.
[66] W. Yan, W. Li, and R. Liu, “A Noise-Shaped Buck DC-DC Converter with Improved Light-Load Efficiency and Fast Transient Response,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3908-3924, December 2011.
[67] W. R. Liou, M. L. Yeh, and Y. L. Kuo, “A High Efficiency Dual-Mode Buck Converter IC for Portable applications,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 667-677, March 2008.
[68] X. Liang, Peter. Li, and G. Jayakanthan, “Evaluation of Narrow Vdc-Based Power Delivery Architecture in Mobile Computing System,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2539-2548, November 2011.
[69] J. J. Chen, F. C. Yang, C. C. Lai, Y. S. Hwang, and R. G. Lee, “A High-Efficiency Multimode Li-Ion Battery Charger With Variable Current Source and Controlling Previous-Stage Supply Voltage,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2469-2478, July 2009.
[70] J. M. Alonso, J. García, A. J. Calleja, J. Ribas, and J. Cardesín, “Analysis, Design, and Experimentation of a High-Voltage Power Supply for Ozone Generation Based on Current-Fed Parallel-Resonant Push-Pull Inverter,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1364-1372, September/October 2005.
[71] G. Spiazzi and S. Buso, “Small-Signal Analysis of Cold Cathode Fluorescent Lamp Ballasts,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 753-760, May 2007.
[72] S. B. Yaakov and M. Lineykin, “Maximum Power Tracking of Piezoelectric Transformer HV Converters under Load Variations,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 73-78, January 2006.
[73] S. B. Yaakov and M. M. Peretz, “Cold Cathode Fluorescent Lamps Driven by Piezoelectric Transformers: Stability Conditions and Thermal Effect,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 761-768, May 2007.
[74] S. J. Huang, T. S. Lee, and P. Y. Lin, “Application of Piezoelectric Transformer-Based Resonant Circuits for AC LED Lighting-Driven Systems with Frequency-Tracking Techniques,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6700-6709, December 2014.
[75] R. L. Lin and H. M. Shih, “Piezoelectric Transformer Based Current-Source Charge-Pump Power-Factor-Correction,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1391-1400, May 2008.
[76] S. Raju, R. Wu, M. Chan, and C. P. Yue, “Modeling of Mutual Coupling Between Planar Inductors in Wireless Power Applications,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 481-490, January 2014.
[77] Q. Zhu, L. Wang, and C. Liao, “Compensate Capacitor Optimization for Kilowatt-Level Magnetically Resonant Wireless Charging System,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6758-6768, December 2014.
[78] S. J. Huang, T. S. Lee, and C. T. Hsieh, “Design of a Wireless Power Transfer for Contactless Charging System Using Bio-Inspired Algorithm,” in Proc. IEEE Int. Conf. Inn. Bio-Insp. Comp. Appl., Kaohsiung, Taiwan, pp. 189-194, September 2012.
[79] S. J. Huang and T. S. Lee, “Enhancing Luminance of CCFL-Based Lighting System Using Low-Frequency Driving Techniques,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3279-3287, July 2014.
[80] M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converters, 2nd Edition, Wiley, NJ, USA, 2011.
[81] R. L. Steigerwald, “A Comparison of Half-Bridge Resonant Converter Topologies,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, April 1988.
校內:2020-02-10公開