簡易檢索 / 詳目顯示

研究生: 葉怡伶
Yeh, Yi-Ling
論文名稱: 使用負電轉換技術之單電感雙輸入熱電獵能電路
A Single-Inductor Dual-Input Thermoelectric Energy Harvesting Interface Circuit Using Negative Voltage Transfer Technique
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 負電轉換技術三開關熱電獵能最大功率追蹤
外文關鍵詞: MPPT, negative voltage transfer technique, thermoelectric energy harvest, three-switch
相關次數: 點閱:66下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出熱電獵能之穩壓電路可供無線感測、攜帶式裝置與生醫系統中,解決不定期更換電池的限制。獵能研究可將環境能源收集與轉換為可使用的能源,其中熱電獵能可將人體溫度梯度轉換成電能使用,是一具可持續性並且環保的供電方案。而實際應用中,如何對體溫與環境之間小溫差產生之低能量密度(約100 mV)電源進行有效轉換能量並穩定供給負載電路使用,為此類電路設計之一大挑戰。
    本論文針對低壓差熱電發電應用,提出負電轉換技術之熱電獵能穩壓電路,其具有以單電感、三開關、低損耗、少外部元件、小面積等優點實現獵能穩壓電路。並以TSMC 0.18-C 壓電路少外製程實現所提出設計。整體熱電獵能電路包含負電轉換獵能穩壓電路、最大功率追蹤電路、模態選擇電路與零電流開關控制電路。提出之負電轉換技術可以三開關實現雙輸入熱電獵能穩壓電路,相較於傳統設計減少外部元件與開關的使用,並因此減少相關功率消耗,提升能量轉換效率。模擬峰值效率為75% ,整體晶片長1.040毫米,寬1.042毫米,面積為1.084平方毫米。

    In this thesis, TSMC 0.18-μm 1P6M process is applied to implement the design of the thermoelectric energy harvesting interface circuit. A negative voltage transfer technique is proposed to improve the conversion efficiency of harvesting and suppling power to a load circuit. The loss of traditional two-stage harvesting and regulating circuit can be improved by adopting a three-switch negative voltage transfer structure. The overall thermoelectric energy harvesting interface circuit consists of a negative voltage transfer circuit, a transfer management circuit, a maximum power point tracking (MPPT) circuit, and a zero current sensing (ZCS) circuit. The overall chip die size is 1.040 mm* 1.042 mm. The peak conversion efficiency reaches 75%.

    目 錄 第一章 緒論 1 1.1 獵能研究簡介 1 1.2 研究背景與動機 2 1.3 研究貢獻 3 1.4 論文架構 3 第二章 熱電獵能相關技術與過去研究回顧 4 2.1 熱電材料與電路模型[15-17] 4 2.2 熱電獵能相關技術 6 2.2.1 切換式直流轉換電路 6 2.2.2 切換式直流轉換電路調變技術[14][15] 9 2.3 最大功率追蹤(MPPT)技術 13 2.3.1 最大功率追蹤 13 2.3.2 電路等效阻抗 14 2.4 熱電獵能近年研究發展 16 2.4.1 低壓啟動 16 2.4.2 最大功率追蹤 17 2.4.3 系統轉換效率 18 第三章 負電轉換熱電獵能電路 23 3.1 系統架構 24 3.2 操作原理 26 3.2.1 負電轉換技術(Negative Voltage Transfer Technique) 26 3.2.2 等效阻抗調整 29 3.3 電路設計 30 3.3.1 最大功率偵測電路 30 3.3.2 時脈產生電路 31 3.3.3 零電流開關控制電路(ZCS) 32 3.3.4 模態選擇電路 35 3.3.5 電壓位準移位電路 36 3.3.6 閘極驅動電路 38 3.4 模擬結果 39 3.4.1 TEH模擬結果 39 3.4.2 TEHR模擬結果 42 3.5 晶片佈局[31] 46 第四章 量測結果 49 4.1 量測考量 49 4.2 TEH量測結果 49 4.3 TEHR量測結果 51 第五章 結論與未來展望 55 5.1 結論 55 5.2 未來展望 55 參考文獻 56  

    [1] J. A. Paradiso and M. Feldmeier, "A Compact, Wireless, Self-Powered Pushbutton Controller," in Ubicomp 2001: Ubiquitous Computing: International Conference Atlanta Georgia, USA, September 30–October 2, 2001 Proceedings, G. D. Abowd, B. Brumitt, and S. Shafer, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 299-304.
    [2] IMEC Annual report 2009. Available: http://www.imec.be/ScientificReport/SR2009/HTML/2010/pdf/20100331_JV2009_EN_LR.pdf
    [3] T. Celik and H. Kusetogullari, "Solar-Powered Automated Road Surveillance System for Speed Violation Detection," IEEE Transactions on Industrial Electronics, vol. 57, pp. 3216-3227, 2010.
    [4] A. Nasiri, S. A. Zabalawi, and G. Mandic, "Indoor Power Harvesting Using Photovoltaic Cells for Low-Power Applications," IEEE Transactions on Industrial Electronics, vol. 56, pp. 4502-4509, 2009.
    [5] L. Garbuio, M. Lallart, D. Guyomar, C. Richard, and D. Audigier, "Mechanical Energy Harvester With Ultralow Threshold Rectification Based on SSHI Nonlinear Technique," IEEE Transactions on Industrial Electronics, vol. 56, pp. 1048-1056, 2009.
    [6] T. Sogorb, J. V. Llario, J. Pelegri, R. Lajara, and J. Alberola, "Studying the Feasibility of Energy Harvesting from Broadcast RF Station for WSN," in Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC 2008. IEEE, 2008, pp. 1360-1363.
    [7] E. Carlson, K. Strunz, and B. Otis, "20mV input boost converter for thermoelectric energy harvesting," in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 162-163.
    [8] I. Stark, "Invited Talk: Thermal Energy Harvesting with Thermo Life," in International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06), 2006, pp. 19-22.
    [9] H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, and M. Rosset, "Efficient power management circuit: From thermal energy harvesting to above-IC microbattery energy storage," IEEE Journal of solid-state circuits, vol. 43, pp. 246-255, 2008.
    [10] J. P. Im, S. W. Wang, S. T. Ryu, and G. H. Cho, "A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting," IEEE Journal of Solid-State Circuits, vol. 47, pp. 3055-3067, 2012.
    [11] Y. K. Ramadass and A. P. Chandrakasan, "A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage," 2010.
    [12] J. Kim, M. Shim, J. Jung, H. Kim, and C. Kim, "A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications," in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014, pp. 35-36.
    [13] S. Bandyopadhyay and A. P. Chandrakasan, "Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor," IEEE Journal of Solid-State Circuits, vol. 47, pp. 2199-2215, 2012.
    [14] H. J. Chen, Y. H. Wang, P. C. Huang, and T. H. Kuo, "20.9 An energy-recycling three-switch single-inductor dual-input buck/boost DC-DC converter with 93% peak conversion efficiency and 0.5mm<sup>2</sup> active area for light energy harvesting," in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1-3.
    [15] 張之威, "熱電材料與台大凝態中心," 物理雙月刊, vol. 36, pp. 122-127, 2014.
    [16] 黃振東 and 徐振庭, "熱電材料," ed: 科學發展, 2013.
    [17] G. J. Snyder, "Thermoelectric energy harvesting," in Energy Harvesting Technologies, ed: Springer, 2009, pp. 325-336.
    [18] Catalog of generating modules. Available: http://www.kryotherm.com/index2b57.html?tid=81
    [19] M. K. Kazimierczuk, Pulse-width modulated DC-DC power converters: John Wiley & Sons, 2015.
    [20] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics: Springer Science & Business Media, 2007.
    [21] R. Erickson and D. Maksimovic, "High efficiency DC-DC converters for battery-operated systems with energy management," Worldwide Wireless Communications, Annual Reviews on Telecommunications, pp. 1-10, 1995.
    [22] 羅萍, 李肇基, and 甄少偉, "一種基于負載狀態的分段式PSM調制模式," 電工技術學報, pp. 101-105, 2006.
    [23] T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," IEEE Transactions on Energy Conversion, vol. 22, pp. 439-449, 2007.
    [24] A. M. Atallah, A. Y. Abdelaziz, and R. S. Jumaah, "Implementation of perturb and observe MPPT of PV system with direct control method using buck and buck-boost converters," Emerging Trends in Electrical, Electronics & Instrumentation Engineering: an International Journal (EEIEJ), vol. 1, pp. 31-44, 2014.
    [25] K. Kobayashi, H. Matsuo, and Y. Sekine, "A novel optimum operating point tracker of the solar cell power supply system," in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 2004, pp. 2147-2151.
    [26] P. S. Weng, H. Y. Tang, P. C. Ku, and L. H. Lu, "50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting," IEEE Journal of Solid-State Circuits, vol. 48, pp. 1031-1041, 2013.
    [27] G. A. Rincón-Mora, Power IC Design-From the Ground up: Lulu. com, 2015.
    [28] C. Q. Tran, H. Kawaguchi, and T. Sakurai, "Low-power high-speed level shifter design for block-level dynamic voltage scaling environment," in 2005 International Conference on Integrated Circuit Design and Technology, 2005. ICICDT 2005., 2005, pp. 229-232.
    [29] P. H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, et al., "A 95mV-startup step-up converter with V<inf>th</inf>-tuned oscillator by fixed-charge programming and capacitor pass-on scheme," in 2011 IEEE International Solid-State Circuits Conference, 2011, pp. 216-218.
    [30] P. H. Chen and P. M. Y. Fan, "An 83.4% Peak Efficiency Single-Inductor Multiple-Output Based Adaptive Gate Biasing DC-DC Converter for Thermoelectric Energy Harvesting," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, pp. 405-412, 2015.
    [31] B. Razavi, Design of Analog CMOS Integrated Circuits: Tata McGraw-Hill Education, 2002.
    [32] S. Atsumi, M. Kuriyama, A. Umezawa, H. Banba, K. Naruke, S. Yamada, et al., "A 16-Mb flash EEPROM with a new self-data-refresh scheme for a sector erase operation," IEEE Journal of Solid-State Circuits, vol. 29, pp. 461-469, 1994.
    [33] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, "50 mV-input batteryless boost converter for thermal energy harvesting," IEEE Journal of Solid-State Circuits, vol. 48, pp. 1031-1041, 2013.

    下載圖示 校內:2021-07-22公開
    校外:2021-07-22公開
    QR CODE