簡易檢索 / 詳目顯示

研究生: 王任浩
Wang, Jen-Hao
論文名稱: 具功因修正之高效率新型單級式交/直流轉換器
A New High-Efficiency Single- Stage AC/DC Converter with Power Factor Correction
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 77
中文關鍵詞: 交/直流轉換器功率因數修正單級式直接功率傳送能量回收緩震器
外文關鍵詞: AC/DC Converter, Power Factor Correction (PFC), Single-Stage, Direct Power Transfer (DPT), Energy-Recycling Snubber
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一新型高效率單級式功因修正之交/直流轉換器,在架構上結合一升降壓型功因修正電路與一返馳式直/直流轉換電路。藉由一組變壓器取代前級功因修正電感,不僅可達到功因修正之功能,亦可提供一直接功率傳輸路徑並降低直流匯流排電壓。另一方面,使用返馳式直/直流轉換電路達到電器隔離的功用,但功率開關元件於切換截止的過程中,附著於變壓器之漏感能量亦可能對其造成損害。因此,本論文亦於電路中建立一能量回收路徑,不僅回收漏感能量,亦可抑制因變壓器漏感造成開關電壓突波的問題。本論文詳述轉換器操作原理、穩態分析與參數設計。

    為驗證所提之單級式交/直流轉換器之效能,實際製作一額定功率100W,輸入電壓85 Vrms 到265 Vrms,輸出電壓48 V 的雛型電路。根據實驗結果證實,本文所提之轉換器架構可有效抑制功率開關之電壓突波並減少二極體逆向回復電流。此外,亦可得接近於1之功率因數且最高直流匯流排電壓低於150 V,最高效率可達94%。

    The thesis proposes a new high-efficiency, single-stage power factor correction (PFC) AC/DC converter by integrating a buck-boost power factor corrector with a flyback DC/DC converter. By replacing the inductor of PFC semi-stage with a transformer, the proposed converter not only achieves PFC, but low DC-bus voltage by providing a direct power transfer (DPT) path from the input side to output load directly. On the other hand, an energy-recycling path is designed to recycle the energy and suppress the voltage spike caused by the leakage inductance on the power switch to achieve electric isolation and to avoid the damage on power switch, as turned off in the flyback DC/DC converter. The operation principles, steady-state analysis, design guidelines of the proposed converter are presented in the thesis.

    To verify the effectiveness of the proposed converter, a 100 W prototype circuit with 85 Vrms to 265 Vrms line inputs and output voltage of DC 48 V has been implemented. The experimental results show that the voltage spike on the power switch can be suppressed effectively and the reverse recovery current from diodes can also be alleviated. Moreover, close-to-unity PF and maximum DC-bus voltage of well below 150 V can be obtained with the maximum circuit efficiency of 94 %.

    摘 要 I ABSTRACT II 誌 謝 III CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII CHAPTER 1. INTRODUCTION 1 1.1. Backgrounds and Motivations 1 1.2. Literature Review 3 1.3. Research Objectives and Method 5 1.4. Organization of the Thesis 6 CHAPTER 2. REVIEW OF SINGLE-STAGE PFC AC/DC CONVERTERS 7 2.1 Conventional Single-Stage PFC AC/DC Converters 7 2.2 Single-Stage PFC AC/DC Converters with Reduced DC Bus Voltage 9 2.2.1 AC/DC Converter with Variable Switching Frequency Technique 9 2.2.2 AC/DC Converter with DC Bus Voltage Feedback Technique 10 2.2.3 AC/DC Converter with Direct Power Transfer Technique 11 2.3 Single-Stage PFC AC/DC Converters with Energy-Recycling Snubber 12 2.4 Summary 14 CHAPTER 3. THE PROPOSED SINGLE-STAGE PFC AC/DC CONVERTER 16 3.1 The Circuit Configuration and Features 16 3.2 Operating Principles 17 3.3 Steady State Analysis and Design 27 3.3.1 Design Guidelines of the Major Parameters 27 3.3.2 Power Transfer Ratio, PT1/PT2 33 3.3.3 Energy-Recycling Snubber Design 34 3.3.4 Analysis of the DC-bus Voltage with Leakage Inductance 35 3.3.5 Input LC Low-Pass Filter Design 38 3.3.6 Voltage Stress Expression 38 3.4 Summary 39 CHAPTER 4. SIMULATION AND EXPERIMENTAL RESULTS 40 4.1 Specification of the Proposed Converter 40 4.2 Control and Peripheral Circuits of the Proposed Converter 42 4.2.1 Output Voltage Feedback Control 42 4.2.2 Peripheral Circuits 43 4.3 Simulation and Experimental Results 46 4.3.1 The Input Voltage and Current Waveforms 46 4.3.2 The Gate Signal, Drain-Source and Current Waveforms of Switch S 49 4.3.3 The Gate Signal, Drain-Source and Current Waveforms of the Diodes 51 4.3.4 The Waveforms of the Energy-Recycling Snubber 59 4.3.5 DC-bus and Output Capacitors 61 4.3.6 Power Factor of the Proposed Converter 65 4.3.7 Conversion Efficiency of the Proposed Converter 66 4.3.8 Comparisons with the Existing Converters 68 4.4 Summary 71 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 72 5.1 Conclusions 72 5.2 Future Works 73 REFERENCES 74

    [1]S. Herraiz, L. Sainz and J. Pedra, “Line Side Behavior of Single-Phase Uncontrolled Rectifiers,” in Proc. Ninth International Conference on Harmonic and Quality of Power, Oct. 2000.
    [2]J. S. Jr Subjak,. and J. S. Mcquilkin, “Harmonic-Causes, Effects, Measurements and Analysis: An Update,” IEEE Transections on Industry Applications, vol. 26, no. 6, pp. 1034-1042, Nov./Dec. 1990.
    [3]S. Singh, G. Bhuvaneswari and B. Singh, “A Power Factor Corrected Two Stage Switched Mode Power Supply,” 2012 IEEE International Conference on PEDES, Dec. 2012.
    [4]J. Zhang, M. M. Jovanovic and F. C. Lee, “Comparison between CCM Single-Stage And Two-Stage Boost PFC Converters,” in APEC Conference, Mar. 1999.
    [5]C. Qiao, K. M. Smedley, “A Topology Survey of Single-Stage Power Factor Corrector with a Boost Type Input-Current-Shaper,” IEEE Transections on Power Electronics, vol. 16, no. 3, pp. 360-368, May 2001.
    [6]B. Sharifipour, J. S. Huang, P. Liao, L. Huber, and M. M. Jovanovic, “Manufacturing and Cost Analysis of Power-Factor-Correction Circuits,” in APEC Conference, Feb. 1998.
    [7]K. W. Siu, Y. S. Lee and C. K. Tse, “Analysis and Experimental Evaluation of Single-Switch Fast-Response Switching Regulators with Unity Power Factor,” IEEE Transections on Industry Applications, vol. 33, no. 5, pp. 1260-1266, Sep./Oct. 1997.
    [8]J. Qian, and F. C. Lee, “A High-Efficiency Single-Stage Single-Switch High-Power-Factor AC/DC Converter with Universal Input,” IEEE Transections on Power Electronics, vol. 13, no. 4, pp. 699-705, Jul. 1998.
    [9]M. T. Madigan, R. W. Erickson and E. H. Ismail, “Integrated High-Quality Rectifier–Regulators,” IEEE Transections on Industrial Electronics, vol. 46, no. 4, pp. 749-758, Aug. 1999.
    [10]T. F. Wu and Y. K. Chen, “Analysis and Design of an Isolated Single-Stage Converter Achieving Power-Factor Correction and Fast Regulation,” IEEE Transections on Industrial Electronics, vol. 46, no. 4, pp. 759-767, Dec. 1999.
    [11]Y. Jang, M. M. Jovanovic and D. L. Dillman, “Soft-Switched PFC Boost Rectifier With Integrated ZVS Two-Switch Forward Converter,” IEEE Transections on Power Electronics, vol. 21, no. 6, pp. 1600-1606, Nov. 2006.
    [12]H. E. Tacca, “Power Factor Correction Using Merged Flyback-Forward Converters,” IEEE Transections on Power Electronics, vol. 15 no. 4, pp. 585-594, Jul. 2000.
    [13]E. H. Ismail, A. J. Sabzali and M. A. Al-Saffar, “Buck–Boost-Type Unity Power Factor Rectifier With Extended Voltage Conversion Ratio,” IEEE Transections on Industrial Electronics, vol. 55, no. 3, pp. 1123-1132, Mar. 2008.
    [14]C. M. Wang, “A Novel Single-Switch Single-Stage Electronic Ballast With High Input Power Factor,” IEEE Transections on Power Electronics, vol. 22, no. 3, pp. 797-803, May 2007.
    [15]J. C. W. Lam, and P. K. Jain, “A Novel High-Power-Factor Single-Switch Electronic Ballast,” IEEE Transections on Industry Applications, vol. 46, no. 6, pp. 2202-2211, Nov./Dec. 2010.
    [16]M. H. L. Chow, Y. S. Lee and C. K. Tse, “Single-Stage Single-Switch Isolated PFC Regulator with Unity Power Factor, Fast Transient Response, and Low-Voltage Stress,” IEEE Transections on Power Electronics, vol. 15, no. 1, pp. 156-163, Jan. 2000.
    [17]J. J. Lee, J. M. Kwon, E. H. Kin, W. Y. Choi and B. H. Kwon, “Single-Single Single-Switch PFC Flyback Converter Using a Synchronous Rectifier,” IEEE Transections on Industrial Electronics, vol. 55, no. 3, pp. 1352-1365, Mar. 2008.
    [18]J. Qian, Q. Zhao and F. C. Lee, “Single-Stage Single-Switch Power-Factor-Correction AC/DC Converters with DC-Bus Voltage Feedback for Universal Line Applications,” IEEE Transections on Power Electronics, vol. 13, no. 6, pp. 1079-1088, Nov. 1998.
    [19]H. Ma, Y. Ji and Y. Xu, “Design and Analysis of Single-Stage Power Factor Correction With a Feedback Winding,” IEEE Transections on Power Electronics, vol. 25, no. 6, pp. 1460-1470, Jun. 2010.
    [20]H. Y. Li, H. C. Chen and L. K. Chang, “Analysis and Design of a Single-Stage Parallel AC-to-DC Converter,” IEEE Transections on Power Electronics, vol. 24, no. 12, pp. 2989-3002, Dec. 2009.
    [21]J. Y. Lee, “Single-Stage AC/DC Converter With Input-Current Dead-Zone Control for Wide Input Voltage Ranges,” IEEE Transections on Industrial Electronics, vol. 54, no. 2, pp. 724-732, Apr. 2007.
    [22]A. Lazaro, A. Barrado, M. Sanz, V. Salas and E. Olias, “New Power Factor Correction AC-DC Converter With Reduced Storage Capacitor Voltage,” IEEE Transections on Industrial Electronics, vol. 54, no. 1, pp. 384-397, Feb. 2007.
    [23]S. K. Ki and D. D. C. Lu, “Extension of Minimum Separable Switching Configuration Modeling to Single-Stage AC/DC Converters with Direct Power Transfer,” IET Power Electronics, vol. 5, iss. 7, pp. 1154-1163, 2012.
    [24]J. Zhang, D. D. C. Lu and T. Sun, “Flyback-Based Single-Stage Power-Factor-Correction Scheme With Time-Multiplexing Control,” IEEE Transections on Industrial Electronics, vol. 57, no. 3, pp. 1041-1049, Mar. 2010.
    [25]S. Luo, W. Qiu, W. Wu and I. Batarseh, “Flyboost Power Factor Correction Cell and a New Family of Single-Stage AC/DC Converters,” IEEE Transections on Industrial Electronics, vol. 20, no. 1, pp. 25-34, Jan. 2005.
    [26]N. Golbon and G. Moschopoulos, “A Low-Power AC-DC Single-Stage Corrector With Reduced DC Bus Voltage Variation,” IEEE Transections on Power Electronics, vol. 27, no. 8, pp. 3714-3724, Aug. 2012.
    [27]Z. Hossain, K. J. Olejniczak, K. C. Burgers and J. C. Balda, “Design of RCD Snubbers Based Upon Approximations to the Switching Characteristics,” IEEE TA2, 6.l–6.3, 1997.
    [28]K. Fujiwara and H. Nomura, “A Novel Lossless Passive Snubber for Soft-Switching Boost-Type Converters,” IEEE Transections on Power Electronics, vol. 14, no. 6, pp. 1065-1069, Nov. 1999.
    [29]R. T. H. Li and H. S. Chung, “A Passive Lossless Snubber Cell With Minimum Stress and Wide Soft-Switching Range,” IEEE Transections on Power Electronics, vol. 25, no. 7, pp. 1725-1738, Jul. 2010.
    [30]A. Abramovitz, T. Cheng and K. Smedley, “Analysis and Design of Forward Converter With Energy Regenerative Snubber,” IEEE Transections on Power Electronics, vol. 25, no. 3, pp. 667-676, Mar. 2010.
    [31]A. Abramovitz, C. S. Liao and K. Smedley, “State-Plane Analysis of Regenerative Snubber for Flyback Converters,” IEEE Transections on Power Electronics, vol. 28, no. 11, pp. 5323-5332, Nov. 2013.
    [32]Y. C. Li and C. L. Chen, “A Novel Single-Stage High-Power-Factor AC-to-DC LED Driving Circuit With Leakage Inductance Energy Recycling,” IEEE Transections on Industrial Electronics, vol. 59, no. 2, pp. 793-802, Feb. 2012.
    [33]D. D. C. Lu, H. H. C. Iu and V. Pjevalica, “A Single-Stage AC/DC Converter With High Power Factor, Regulated Bus Voltage, and Output Voltage,” IEEE Transections on Power Electronics, vol. 23, no. 1, pp. 218-228, Jan. 2008.
    [34]M. M. Jovanovic, D. M. C. Tsang and F. C. Lee, “Reduction of Voltage Stress In Integrated High-Quality Rectifier-Regulators By Variable Frequency Control,” in APEC Conference, Feb. 1994.
    [35]J. M. Alonso, M. A. D. Costa and C. Ordiz, “Integrated Buck-Flyback Converter as a High-Power-Factor Off-Line Power Supply,” IEEE Transections on Industrial Electronics, vol. 55, no. 3, pp. 1090-1100, Mar. 2008.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE