簡易檢索 / 詳目顯示

研究生: 蔡宜樺
Tsai, Yi-Hwa
論文名稱: 功能性電磁彈性材料殼結構之三維靜動態行為分析
Three-Dimensional Static and Dynamic Analyses of Functionally Graded Magneto-Electro-Elastic Shells
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 202
中文關鍵詞: 三維電磁彈性力學智慧型材料耦合古典殼理論微擾法三維理論自由振動動態分析靜態分析功能性材料
外文關鍵詞: Static; Dynamic, Vibration, 3-D theory, Coupled CST, 3-D Magneto-electro-elasticity; Intelligent mate, Perturbation method
相關次數: 點閱:129下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文依據三維電磁彈性力學理論,藉由微擾法推導出功能性電磁彈性材料板殼結構之三維靜動態漸近解析理論。在此三維靜動態漸近解析理論中,根據不同的曲面荷重條件(開放型迴路及封閉型迴路),分別發展出兩組相應其物理問題之解析模式。首先,本文使用直接消去法,將29條基本電磁彈耦合方程式,化簡成由10個電磁彈性場中的主要變數所表示的微分方程式。透過無因次化、漸近展開及連續積分之求解程序,可將本三維問題分解為具耦合古典殼理論型式(CCST)的二維問題之遞迴控制方程式。動態問題解析中,引入多重時間尺度以消除不同階數問題之長期效應,並使主要場量變數之漸近展開具一致性及可行性。同時,推衍出不同階數的可解條件及歸一正交條件,使本漸近理論之首階解與高階解得以唯一。當應力平衡方程式中,忽略慣性項且假設所有場量變數均與時間變數無關,則運動方程式可簡化成靜態問題之控制方程式。靜態問題解析中,對於開放型迴路及封閉型迴路,則分別考慮三種表面側向荷重。依據本文之三維漸近理論,便可經由一套系統化且具遞迴特性之解析程序,求解各階具CCST型式之控制方程式,以獲得靜動態問題之三維解析解。為求一般性,本文在厚度方向之材料變化,係由考慮為異向性假設出發,進而在單層材料、多層材料及功能性材料中,分別簡化為常數、分層常數及遵循羃次型(或指數型)函數變化。本文藉由許多文獻上提供之標準驗證範例的比較,以驗證三維漸近解析理論在功能性電磁彈性材料板之靜動態問題解析的精確性與收斂性。最後,本文提出功能性電磁彈性材料殼之靜動態問題的數值範例,同時對電磁彈耦合效應及材料變化指數在靜動態問題之特性上,進行一系列之參數研究。

    Based on the three-dimensional (3-D) magneto-electro-elasticity, we present two asymptotic formulations for the static and dynamic problems of simply supported, doubly curved, functionally graded (FG) magneto-electro-elastic shells with open-circuit and close-circuit surface conditions using the method of perturbation, respectively. By means of direct elimination, we firstly reduce 29 basic equations of 3-D magneto-electro-elasticity to 10 differential equations in terms of 10 primary variables of magnetic, electric and elastic fields. After performing through the complicated but straightforward derivation such as non-dimensionalization, asymptotic expansion, and successive integration, we finally decompose the present 3-D problem as recursive sets of two-dimensional (2-D) problems with motion equations of the coupled classical shell theory (CCST). The method of multiple time scales is introduced to eliminate the secular terms in various order problems of the present formulation so that the present asymptotic expansion to the primary field variables leads to be uniform and feasible. Both the solvability and orthonormality conditions are derived for the various order problems to uniquely determine the asymptotic solutions of various orders. As the stress equilibrium equations are regardless of the inertial terms and the field varialbes are independent upon the time variables, present motion equations can be reduced to static governing equations. Three different types of loadings applied on the lateral surfaces of the shells with open-circuit and closed-circuit surface conditions are considered in static problems, respectively. Depending on present solution procedure, it is shown that the 3-D asymptotic solutions can be obtained by repeatedly solving the CCST-type governing equations order-by-order in a systematic and hierarchic manner. For the purpose of generality, the material properties in the present asymptotic formulations are regarded to be heterogeneous through the thickness coordinate. Afterwards, they are further specified to be constants in single-layer shells, to be layerwise constants in multilayered shells and to obey an identical power-law (or exponent-law) distribution in FG shells. The present asymptotic formulations are simultaneously applied to several benchmark problems to validate the accuracy and the rate of convergence of present asymptotic solutions. Parametric studies for both the coupled magneto-electro-elastic effect and the influence of material property gradient index on static and dynamic characteristics of FG magneto-electro-elastic shells are studied.

    Abstract..................................................I Abstract (in Chinese)………………………………………………II Acknowledgements (in Chinese)………………………………...III Contents…………………………………………………………………V List of Tables………………………………………………………IX List of Figures………………………………………….........XII Nomenclature………………………………………………………..XV Chapter 1 Introduction………………………………………….....1 1.1 Background and Literature Review…………….......1 1.2 Overview of Present Thesis…………………………...8 Chapter 2 Dynamic Responses of Magneto-Electro-Elastic Shells………...............11 2.1 Basic Motion Equations of 3-D Magneto-Electro-Elasticity…………………….11 2.2 Non-dimensionalization……………………………....14 2.3 Asymptotic Expansions………………………………...17 2.3.1 Open-Circuit Surface Conditions (j = 0)…….....17 2.3.2 Closed-Circuit Surface Conditions (j = 2)………....19 2.4 Successive Integration………………………........21 2.4.1 Open-Circuit Surface Conditions (j = 0)…….......21 2.4.2 Closed-Circuit Surface Conditions (j = 2)……….26 Chapter 3 Static Behaviors of Magneto-Electro-Elastic Shells……………..........31 3.1 Basic Static Equations of 3-D Magneto-Electro-Elasticity…………………..31 3.2 Asymptotic Expansions………………………………...33 3.2.1 Open-Circuit Surface Conditions (j = 0)………...33 3.2.2 Closed-Circuit Surface Conditions (j = 2)……...34 3.3 Successive Integration…………………………………36 3.3.1 Open-Circuit Surface Conditions (j = 0)………….36 3.3.2 Closed-Circuit Surface Conditions (j = 2)……...39 Chapter 4 Cylindrical Bending Vibrations of Piezoelectric Shells……..43 4.1 Basic Motion Equations of 3-D Piezoelectricity…43 4.2 Asymptotic Expansions…………………………….....46 4.2.1 Open-Circuit Surface Conditions (j = 0)………...46 4.2.2 Closed-Circuit Surface Conditions (j = 2)……...49 4.3 Successive Integration…………………………………51 4.3.1 Open-Circuit Surface Conditions (j = 0)………….51 4.3.2 Closed-Circuit Surface Conditions (j = 2)……...56 Chapter 5 Applications to Benchmark Problems…………......61 5.1 Dynamic Responses of Magneto-Electro-Elastic Shells……...............61 5.1.1 Open-Circuit Surface Conditions (j = 0)………….61 5.1.2 Closed-Circuit Surface Conditions (j = 2)……...66 5.2 Static Behaviors of Magneto-Electro-Elastic shells……………………….70 5.2.1 Open-Circuit Surface Conditions (j = 0)………...70 5.2.2 Closed-Circuit Surface Conditions (j = 2)……...72 5.3 Cylindrical Bending Vibrations of Piezoelectric Shells…………….........74 5.3.1 Open-Circuit Surface Conditions (j = 0)………….74 5.3.2 Closed-Circuit Surface Conditions (j = 2)……...78 Chapter 6 Illustrative Examples…………………………….....82 6.1 Dynamic Responses of Magneto-Electro-Elasticity….............83 6.1.1 Functionally Graded Elastic Plates…………………83 6.1.2 Functionally Graded Piezoelectric Plates…………85 6.1.3 Multilayered Magneto-Electro-Elastic Plates…….86 6.1.4 Functionally Graded Magneto-Electro-Elastic Plates……………………….87 6.1.5 Functionally Graded Magneto-Electro-Elastic Shell....................88 6.2 Static Behaviors of Magneto-Electro-Elasticity..90 6.2.1 Single-layer Piezoelectric Flat-Panels………....91 6.2.2 Multilayered Magneto-Electro-Elastic Plates…….92 6.2.3 Multilayered Magneto-Electro-Elastic Shells…….93 6.2.4 Functionally Graded Magneto-Electro-Elastic Shell...................96 6.3 Cylindrical Bending Vibrations of Piezoelectricity........98 6.3.1 Functionally Graded Elastic Plates…………………98 6.3.2 Multilayered Piezoelectric Plates………………...99 6.3.3 Functionally Graded Piezoelectric Plates……….100 6.3.4 Functionally Graded Piezoelectric Shells……….101 Chapter 7 Conclusions and Recommendations…………………..103 References………………….…………………..105 Tables………………………………..………….115 Figures…………………..……………………..155 Appendix A……………………………………...189 Appendix B………………………………….....192 Appendix C……………………………………...196 Appendix D……………………………………….198 Appendix E…………………..………………...200 Vita (in Chinese)…………………..……………………201

    Annigeri, A.R.; Ganesan, N.; Swarnamani, S., Free vibrations of simply supported layered and multiphase magneto-electro-elastic cylindrical shells. Smart Materials and Structures, vol. 15 pp. 459-467, 2006.
    Bhangale, R.K.; Ganesan, N., Free vibration studies of simply supported non-homogenous functionally graded magneto-electro-elastic finite cylindrical shells. Journal of Sound and Vibration, vol. 288, pp. 412-422, 2005.
    Bhangale, R.K.; Ganesan, N., Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method. Journal of Sound and Vibration, vol. 294, pp. 1016-1038, 2006.
    Bhimaraddi, A., Free vibration analysis of doubly-curved shallow shells on rectangular planform using three-dimensional elasticity theory. International Journal of Solids and Structures, vol. 27, pp. 897-913, 1991.
    Bhimaraddi, A.; Chandrashekhara, K., Three-dimensional elasticity solution for static response of simply supported orthotropic cylindrical shells. Composite Structures, vol. 20, pp. 227-235, 1992.
    Bhimaraddi, A., Three-dimensional elasticity solution for static response of orthortropic doubly curved shallow shells on rectangular platform. Composite Structures, vol. 24, pp. 67-77, 1993.
    Buchanan, G.R., Free vibration of an infinite magneto-electro-elastic cylinder. Journal of Sound and Vibration, vol. 268, pp. 413-426, 2003.
    Buchanan, G.R., Layered versus multiphase magneto-electro-elastic composites. Composite Part B: Engineering, vol. 35, pp. 413-420, 2004.
    Bufler, H., Theory of elasticity of a multilayered medium. Journal of Elasticity, vol. 1, pp. 125-143, 1971.
    Cicala, P., Systematic Approach to Linear Shell Theory. Levrotto & Bella, Torino, Italy, 1965.
    Chen, C.Q.; Shen, Y.P., Three-dimensional analysis for the free vibration of finite-length orthotropic piezoelectric circular cylindrical shells. Journal of Vibration and Acoustics, ASME, vol. 120, pp. 194-198, 1998.
    Chen, W.Q.; Ding, H.J.; Hangzhou, P.R., On fee vibration of a functionally graded piezoelectric rectangular plate. Acta Mechanica, vol. 153, pp. 207-216, 2002.
    Chen, W.Q.; Lee, K.Y., Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. International Journal of Solids and Structures, vol. 40, pp. 5689-5705, 2003.
    Chen, W.Q.; Lee, K.Y., State-space approach for statics and dynamics of angle-ply laminated cylindrical panels in cylindrical bending. International Journal of Mechanical Sciences, vol. 47, pp. 374-387, 2005.
    Chen, W.Q.; Lee, K.Y.; Ding, H.J., On fee vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. Journal of Sound and Vibration, vol. 279, pp. 237-251, 2005.
    Cheng, Z.Q.; Batra, R.C., Three-dimensional asymptotic analysis of multiple-electroded piezoelectric laminates. AIAA Journal, vol. 38, pp. 317-324, 2000a.
    Cheng, Z.Q.; Batra, R.C., Generalized plane solution for monoclinic piezoelectric laminates. AIAA Journal, vol. 38, pp. 335-341, 2000b.
    Cheng, Z.Q.; Batra, R.C., Three-dimensional asymptotic scheme for piezothermoelastic laminates. Journal of Thermal Stresses, vol. 23, pp. 95-110, 2000c.
    Cheng, Z.Q.; Reddy, J.N., Asymptotic theory for of laminated piezoelectric circular cylindrical shells. AIAA Journal, vol. 40, pp. 553-558, 2002.
    Cheng, Z.Q.; Reddy, J.N., An asymptotic theory for vibrations of inhomogeneous/laminated piezoelectric plates. IEEE Transactions of Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, pp. 1563-1569, 2003.
    Dube, G.P.; Kapuria, S.; Dumir, P.C., Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending. International Journal of Mechanical Sciences, vol. 38, pp. 1161-1177, 1996a.
    Dube, G.P.; Kapuria, S.; Dumir, P.C., Exact piezothermoelastic solution of simply-supported orthotropic circular cylindrical panel in cylindrical bending. Archive of Applied Mechanics, vol. 66, pp. 537-554, 1996b.
    Dumir, P.C.; Dube, G.P.; Kapuria, S.; Exact piezoelectric solution of simply-supported orthotropic circular cylindrical panel in cylindrical bending. International Journal of Solids and Structures, vol. 34, pp. 685-702, 1997.
    Fan, J.R.; Ye, J.Q., A series solution of the exact equation for thick orthotropic plates. International Journal of Solids and Structures, vol. 26, pp. 773-778, 1990a.
    Fan, J.R.; Ye, J.Q., An exact solution for the statics and dynamics of laminated thick plates with orthotropic layers. International Journal of Solids and Structures, vol. 26, pp. 655-662, 1990b.
    Fan, J.R.; Zhang. J., Analytical solutions for thick doubly curved laminated shells. Journal of Engineering Mechanics, ASCE, vol. 118, pp. 1338-1356, 1992.
    Lage, R.G..; Soares, C.M.M.; Soares, C.A.M; Reddy, J.N., Layerwise partial mixed finite element analysis of magneto-electro-elastic plates. Computers and Structures, vol. 82, pp. 1293-1301, 2004.
    Gol’denvaizer, A.N., Theory of Thin Elastic Shells. Pergamon Press, New York, USA.
    Gol’denvaizer, A.N., Derivation of an approximated theory of shells by means of asymptotic integration of the equations of the theory of elasticity. PMM, vol. 27, pp. 593-608, 1963.
    Heyliger, P., Static behavior of laminated elastic/piezoelectric plates. AIAA Journal, vol. 32, pp. 2481-2484, 1994.
    Heyliger, P., Exact solutions for simply supported laminated piezoelectric plates. Journal of Applied Mechanics, ASME, vol. 64, pp. 299-306, 1997.
    Heyliger, P.; Brooks, S., Free vibration of piezoelectric laminates in cylindrical bending. International Journal of Solids and Structures, vol. 32, pp. 2945-2960, 1995.
    Heyliger, P.; Brooks, S., Exact solutions for laminated piezoelectric plates in cylindrical bending. Journal of Applied Mechanics, ASME, vol. 63, pp. 903-910, 1996.
    Heyliger, P.; Pan, E., Static fields in magnetoelectroelastic laminates. AIAA Journal, vol. 42, pp. 1435-1443, 2004.
    Heyliger, P.; Ramirez, F.; Pan, E., Two-dimensional static fields in magnetoelectroelastic laminates. Journal of Intelligent Material Systems and Structures, vol. 15, pp. 689-709, 2004.
    Heyliger, P.; Saravanos, D.A., Exact free-vibration analysis of laminated plates with embedded piezoelectric layers. Journal of the Acoustical Society of America, vol. 98, pp. 1547-1557, 1995.
    Hill, R., A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, vol. 13, pp. 213-222, 1965.
    Huang, N.N., Exact analysis for three-dimensional free vibrations of cross-ply cylindrical and doubly-curved laminates. Acta Mechanica, vol. 108, pp. 23-34, 1995.
    Huang, N.N.; Tauchert, T.R., Thermoelastic solution for cross-ply cylindrical panels. Journal of Thermal Stresses, vol. 14, pp. 227-237, 1991.
    Huang, N.N.; Tauchert, T.R., Thermal stresses in doubly-curved cross-ply laminates. International Journal of Solids and Structures, vol. 29, pp. 991-1000, 1992.
    Johnson, M.W.; Widera, O.E., An asymptotic theory for the vibration of non-homogeneous plates. Acta Mechanica, vol. 12, pp. 121-142, 1971.
    Kapuria, S.; Dumir, P.C.; Sengupta, S., Exact axisymmetric solution for a simply supported piezoelectric cylindrical shell. Archive of Applied Mechanics, vol. 67, pp. 260-273, 1997a.
    Kapuria, S.; Dumir, P.C.; Sengupta, S., Nonaxisymmetric exact piezothermoelastic solution for laminated cylindrical shell. AIAA Journal, vol. 35, pp. 1792-1795, 1997b.
    Kapuria, S.; Sengupta, S.; Dumir, P.C., Three-dimensional solution for simplyu-supported piezoelectric cylindrical shell for axisymmetric load. Computer Methods in Applied Mechanics and Engineering, vol. 140, pp. 139-155, 1997.
    Kapuria, S.; Sengupta, S.; Dumir, P.C., Assessment of shell theories for hybrid piezoelectric cylindrical shell under electromechanical load. International Journal of Mechanical Science, vol. 40, pp. 461-477, 1998.
    Li, J.Y.; Dunn, M.L., Micromechanics of magnetoelectroelastic composite materials; average fields and effective behavior. Journal Intelligent Material System and Structures, vol. 9, pp. 404-416, 1998.
    Lü, C.F.; Huang Z.Y.; Chen, W.Q., Semi-analytical solutions for free vibration of anisotropic laminated plates in cylindrical bending. Journal of Sound and Vibration, vol. 304, pp.987-995, 2007.
    Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, vol. 21, pp. 571-574, 1973.
    Nayfeh, A.H., Introduction to Perturbation Techniques. Wiley, New York, USA, 1993.
    Pagano, N.J., Exact solutions for composite laminates in cylindrical bending. Journal of Composite Materials, vol. 3, pp. 398-411, 1969.
    Pagano, N.J., Exact solutions for rectangular bidirectional composites and sandwich plates. Journal of Composite Materials, vol. 4, pp. 20-34, 1970.
    Pan, E., Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics, ASME, vol. 68, pp. 608-618, 2001
    Pan, E., Exact solution for functionally graded anisotropic elastic composite laminates. Journal of Composite Materials, vol. 37, pp. 1903-1920, 2003.
    Pan, E.; Han, F., Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science, vol. 43, pp. 321-339, 2005.
    Pan, E.; Heyliger, P.R., Free vibrations of simply supported and multilayered magneto-electro-elastic plates. Journal of Sound and Vibration, vol. 252, pp. 429-442, 2002.
    Pan, E.; Heyliger, P.R., Exact solutions for magneto-electro-elastic laminates in cylindrical bending. International Journal of Solids and Structures, vol. 40, pp. 6859-6876, 2003.
    Ramirez, F.; Heyliger, P.R.; Pan, E., Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mechanics of Advanced Materials and Structures, vol. 13, pp. 249-266, 2006a.
    Ramirez, F.; Heyliger, P.R.; Pan, E., Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Journal of Sound and Vibration, vol. 292, pp.626-644, 2006b.
    Ray, M.C.; Bhattacharya, R.; Samanta, B., Exact solutions for static analysis of intelligent structures. AIAA Journal, vol. 31, pp. 1684-1691, 1993.
    Ray, M.C.; Bhattacharya, R.; Samanta, B., Exact solutions for dynamic analysis of composite plates with distributed piezoelectric layers. Computers and Structures, vol. 66, pp. 737-743, 1998.
    Ray, M.C.; Rao, K.M.; Samanta, B., Exact analysis of coupled electroelastic behaviour of a piezoelectric plate under cylindrical bending. Computers and Structures, vol.45, pp.667-677, 1992.
    Ray, M.C.; Rao, K.M.; Samanta, B., Exact solution for static analysis of an intelligent structure under cylindrical bending. Computers and Structures, vol.47, pp.1031-1042, 1993.
    Ray, M.C.; Sachade, H.M., Exact solutions for the functionally graded plates integrated with a layer of piezoelectric fiber-reinforced composite. Journal of Applied Mechanics, ASME, vol.73, pp.622-632, 2006.
    Reddy, J.N.; Cheng, Z.Q., Frequency of functionally graded plate with three-dimensional asymptotic approach. Journal of Engineering Mechanics, ASCE, vol. 129, pp. 896-900, 2003.
    Ren, J.G., Exact solutions for laminated cylindrical shells in cylindrical bending. Composite Science and Technology, vol. 29, pp. 169-187, 1987.
    Ren, J.G., Analysis of simply-supported laminated circular cylindrical shell roofs. Composite Structures, vol. 11, pp. 277-292, 1989.
    Rogers, T.G.; Watson, P.; Spencer, A.J.M, An exact three-dimensional solution for normal loading of inhomogeneous and laminated anisotropic elastic plates of moderate thickness. Proceedings of the Royal Society of London, vol. A437, pp. 199-213, 1992.
    Rogers, T.G.; Watson, P.; Spencer, A.J.M, Exact three-dimensional elasticity solutions for bending of moderately thick inhomogeneous and laminated strips under normal pressure. International Journal of Solids and Structures, vol.32, pp.1659-1673, 1995.
    Shu, X., Free vibration of laminated piezoelectric composite plates based on an accurate theory. Composite Structures, vol. 67 pp. 375-382, 2005.
    Soldatos, K.P.; Hadjigeorgiou, V.P., Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. Journal of Sound and Vibration, vol. 137, pp. 369-384, 1990.
    Spencer, A.J.M.; Watson, P.; Rogers, T.G., Exact theory of heterogeneous anisotropic elastic plates. Materials Science Forum, vol. 123, pp. 235-244, 1993.
    Srinivas, S.; Rao, A.K., Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. International Journal of Solids and Structures, vol. 6, pp. 1463-1481, 1970.
    Tarn, J.Q., An asymptotic theory for dynamic response of anisotropic inhomogenous and laminated cylindrical shells. Journal of Mechanical Physics and Solids, vol. 42, pp. 1633-1650, 1994.
    Tarn, J.Q., An asymptotic variational formulation for dynamic analysis of multilayered anisotropic plates. Computer Methods in Applied Mechanics and Engineering, vol. 130, pp. 337-353, 1996.
    Tarn, J.Q., Elastic buckling of multilayered anisotropic plates. Journal of the Mechanics and Physics of Solids, vol. 44, pp. 389-411, 1996.
    Tarn, J.Q., Asymptotic theory for nonlinear analysis of multilayered anisotropic plates. Journal of Mechanical Physics and Solids, vol. 45, pp. 1105-1120, 1997.
    Tarn, J.Q., A state space formalism for anisotropic elasticity Part I: Rectlilinear anisotropy. International Journal of Solids and Structures, vol. 39, pp. 5143-5155, 2002a
    Tarn, J.Q., A state space formalism for anisotropic elasticity Part II: Cylindrical anisotropy. International Journal of Solids and Structures, vol. 39, pp. 5156-5172, 2002b.
    Tarn, J.Q., A state space formalism for piezothermoelasticity. International Journal of Solids and Structures, vol. 39, pp. 5173-5184, 2002c.
    Tarn, J.Q.; Chang, H.H., A refined state space formalism for piezothermoelasticity. International Journal of Solids and Structures, vol. 45, pp. 3021-3032, 2008.
    Tarn, J.Q.; Wang, Y.M., Asymptotic theory of dynamic response of anisotropic inhomogeneous and laminated plates. International Journal of Solids and Structures, vol. 31, pp. 231-246, 1994.
    Tarn, J.Q.; Wang, Y.M., Asymptotic thermoelastic analysis of anisotropic inhomogeneous and laminated plates. Journal of Thermal Stresses, vol. 18, pp. 35-58, 1995.
    Tsai, Y.H.; Wu, C.P.; Syu, Y.S., Three-dimensional analysis of doubly curved functionally graded magneto-electro-elastic shells. European Journal of Mechanics A/Solids, vol. 27, pp. 79-105, 2008.
    Tsai, Y.H.; Wu, C.P., Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. International Journal of Engineering Science, vol. 46, pp. 843-857, 2008.
    Varadan, T.K.; Bhaskar, K., Bending of laminated orthotropic cylindrical shells --- an elasticity approach. Composite Structures, vol. 17, pp. 141-156, 1991.
    Vel. S.S.; Batra, R.C., Three-dimensional analytical solution for hybrid multilayered piezoelectric plates. Journal of Applied Mechanics, ASME, vol. 67, pp. 558-567, 2000.
    Vel. S.S.; Batra, R.C., Exact solution for the cylindrical bending of laminated plates with embedded piezoelectric shear actuators. Smart Materials and Structures, vol. 10, pp. 240-251, 2001a.
    Vel. S.S.; Batra, R.C., Exact solution for rectangular sandwich plates with embedded piezoelectric shear actuators. AIAA Journal, vol. 39, pp. 1363-1373, 2001b.
    Vel. S.S.; Batra, R.C., Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA Journal, vol. 40, pp. 1421-1433, 2002a.
    Vel. S.S.; Batra, R.C., Exact solution for the cylindrical bending vibration of functionally graded plates. Proceedings of the 17th Technical Conference on the American Society of Composites, Purdue University, U.S.A., 2002b.
    Vel. S.S.; Batra, R.C., Three-dimensional exact solution for the vibration of functionally graded rectangular plates. Journal of Sound and Vibration, vol. 272, pp. 703-730, 2004.
    Vlasov, V.Z., The method of initial functions in problems of theory of thick plates and shells. Proceedings of 9th International Congress in Applied Mechanics, Brussels, pp. 321-330, 1957.
    Wang, J.; Chen, L.; Fang, S., State vector approach to analysis of multilayered magneto-electro-elastic plates. International Journal of Solids and Structures, vol. 40, pp. 1669-1680, 2003.
    Wang, Y.M.; Tarn, J.Q., Three-dimensional analysis of anisotropic inhomogeneous and laminated plates. International Journal of Solids and Structures, vol. 31, pp. 497-515, 1994.
    Widera, O.E., An asymptotic theory for the motion of elastic plates. Journal of Applied Mechanics, ASME, vol. 9, pp. 54-66, 1970.
    Wu. C.P.; Chi, Y.W., Asymptotic solutions of laminated composite shallow shells with various boundary conditions. Acta Mechanica, vol. 132, pp. 1-18, 1999.
    Wu. C.P.; Chi, Y.W., Three-dimensional nonlinear analysis of laminated cylindrical shells under cylindrical bending. European Journal of Mechanics A/Solids, vol. 24, pp. 837-856, 2005.
    Wu. C.P.; Chiu, S.J., Thermoelastic buckling of laminated composite conical shells. Journal of Thermal Stresses, vol. 24, pp. 881-901, 2001.
    Wu. C.P.; Chiu, S.J., Thermally induced dynamic instability of laminated composite conical shells. International of Solids and Structures, vol. 39, pp.3001-3021, 2002.
    Wu. C.P.; Liu, K.Y., A state space approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells. CMC: Computers, Materials and Continua, vol. 6, pp. 177-199, 2007.
    Wu, C.P.; Lo, J.Y., An asymptotic theory for dynamic responses of laminated piezoelectric shell. Acta Mechanica, vol. 183, pp. 177-208, 2006.
    Wu, C.P.; Lo, J.Y.; Chao, J.K., A three-dimensional asymptotic theory of laminated piezoelectric shell. CMC: Computers, Materials and Continua, vol. 2, pp. 119-137, 2005.
    Wu, C.P.; Syu, Y.S., Asymptotic solutions for multilayered piezoelectric cylinders under electromechanical loads. CMC: Computers, Materials and Continua, vol. 4, pp. 87-108, 2006.
    Wu, C.P.; Syu, Y.S., Exact solutions of functionally graded piezoelectric shells under cylindrical bending. International Journal of Solids and Structures, vol. 44, pp.6450-6472, 2007.
    Wu, C.P.; Syu, Y.S.; Lo, J.Y., Three-dimensional solutions for multilayered piezoelectric hollow cylinders. International Journal of Mechanical Sciences, vol. 49, pp.669-689, 2007.
    Wu, C.P.; Tarn, J.Q.; Chi, S.M., Three-dimensional analysis of doubly curved laminated shells. Journal of Engineering Mechanics, ASCE, vol. 122, pp. 391-401, 1996a.
    Wu, C.P.; Tarn, J.Q.; Chi, S.M., An asymptotic theory for dynamic response of doubly curved laminated shells. International Journal of Solids and Structures, vol. 33, pp.3813-3841, 1996b.
    Wu, C.P.; Tsai, Y.H., Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. International Journal of Engineering Science, vol. 45, pp. 744-769, 2007.
    Wu, C.P.; Tsai, Y.H., Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation. International Journal of Engineering Mathematics, 2008 (in press).
    Wu, C.P.; Tsai, Y.H., Free vibration response of functionally graded magneto-electro-elastic shells. Journal of Sound and Vibration, 2008 (submitted).
    Yang, J.S.; Batra, R.C.; Liang, X.Q., The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators. Smart Materials and Structures, vol. 3, pp. 485-493, 1994.
    Ye, J.Q., Laminated Composite Plates and Shells. Springer-Verlag, London, Great Britain, 2003.
    Ye, J.Q.; Soldatos, K.P., Three-dimensional stress analysis orthotropic and cross-ply laminated hollow cylinders and cylindrical panels. Computational Methods in Applied Mechanical and Engineering, vol. 117, pp. 331-351, 1994a.
    Ye, J.Q.; Soldatos, K.P., Three-dimensional vibration of laminated cylinders and cylindrical panels with symmetric or anti-symmetric cross-ply lay-up. Composite Engineering, vol. 4, pp. 429-444, 1994b.
    Ye, J.Q.; Soldatos, K.P., Three-dimensional buckling analysis of laminated composite hollow cylinders and cylindrical panels. International Journal of Solids and Structures, vol. 32, pp. 1949-1962, 1995.
    Zhong, Z.; Shang, E.T., Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. International Journal of Solids and Structures, vol. 40, pp. 5335-5352, 2003.
    Zhong, Z.; Shang, E.T., Exact analysis of simply supported functionally graded piezothermoelectric plates. Journal of Intelligent Materials Systems and Structures, vol. 16, pp. 643-651, 2005.
    Zhong, Z.; Yu, T., Vibration of a simply supported functionally graded piezoelectric rectangular plate. Smart Materials and Structures, vol. 15, pp. 1404-1412, 2006.

    下載圖示 校內:2009-07-24公開
    校外:2009-07-24公開
    QR CODE