簡易檢索 / 詳目顯示

研究生: 吳政憲
Wu, Cheng-Hsien
論文名稱: 以有機金屬氣相磊晶成長氮砷化(銦)鎵及氮磷化銦鎵並應用在量子井雷射及異質接面電晶體
MOVPE Growth of (In)GaNAs and GaInNP for Quantum Well Lasers and Heterojunction Bipolar Transistors
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 207
中文關鍵詞: 異質接面電晶體雷射量子井氮磷化銦鎵氮砷化銦鎵有機金屬氣相沉積
外文關鍵詞: quantum well, InGaNP, GaNAs, Lasers, MOVPE, MOCVD, InGaNAs, HBT
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們以有機金屬氣相磊晶系統成長III-N-V化合物半導體和其異質結構,包括GaNAs、 InGaNAs、GaInNP及GaNAs/GaAs,InGaNAs/GaAs量子井結構。並以高解析度X射線繞射儀、調制光譜儀、光激發螢光光譜儀、二次離子質譜分析儀及高解析度電子穿透顯微鏡等量測設備分析成長材料之特性。
    在(In)GaAs裡加入氮會產生一個由局部局限氮的能態所造成的窄能帶,這個由氮所產生的窄能帶會跟原本的(In)GaAs導電帶強烈地交互作用,並產生兩個新的能階,而這個能帶跟能帶間的交互作用會因為氮的組成增加而增強,所產生的這兩個新能階的能量差距也會因為氮的組成增加而變大,這個所謂的”能帶交互作用”模型可以被用來說明氮在加入 (In)GaAs後所造成對能帶結構變化的影響,在本論文中,氮的組成也是使用”能帶交互作用”模型決定。
    我們用氮原子周圍環境的結構變化跟氫原子所造成的能帶改變來說明在退火後InGaNAs/GaAs量子井發光波長的變化。首先,銦及氮之間的鍵結會隨著退火溫度的上升而增加,而造成能帶的藍移,相反的,氫原子的覆蓋會對氮的加入所造成的能帶減少產生相反的作用,也就是說,退火後會消除氫原子的覆蓋而造成能帶的紅移,上述的這兩個因素可以合理的解釋退火後能帶的變化。
    在本論文中,我們對(In)GaNAs的成長條件做了詳盡的探討。我們發現很多長晶的參數,包括長晶溫度、銦的組成、TBAs的分壓、成長速度及DMHy對整個五族元素的比例都會對氮的加入造成很大的影響。由溫度的變化對光激發螢光光譜的研究,我們發現InGaNAs比InGaAs有比較低的能隙對溫度的相關性,而且活化能隨著氮組成的增加而變大。此外,在高的氮含量試片中,由於銦跟氮的組成分配不均勻,我們發現了銦和氮的群聚及其所造成異常的光特性。
    在本論文中,我們也探討了GaInNP成長在GaAs基板上的結構跟光的特性,也探討了自發性有序排列的材料特性跟溫度變化所造成的能帶變化,在室溫下,對[110]和 這兩個方向所做的極化研究包括極化的高解析度X射線繞射光譜、極化的非接觸電場調制光譜、跟極化的壓電電場調制光譜,我們發現的確有某種程度的自發性有序排列現象的材料特性存在,由高解析度的電子穿透顯微技術所觀察到的由有序性排列所造成的類似超晶格微結構的現象可以進一步證明自發性有序排列現象的確存在於GaInNP的化合物半導體裡。
    在元件應用方面,用有機金屬氣相沈積系統成長以InGaNAs量子井來當作主動層的邊射型雷射結構,並製作成寬區域的雷射,雷射光譜顯示發光波長在1.2微米,坡度效率為1.94W/A,還有臨限電流密度為600 A/ cm2,除此之外,我們用InGaAs/GaAsP跟InGaNAs當作基極材料並成功地製作了低功率消耗的雙異質接面電晶體,跟傳統用GaAs當作基極材料的異質接面電晶體相比,導通電壓降低了225 mV,最高的電流增益為85,截止頻率跟最大震盪頻率分別為55GHz和45GHz。
    本論文的目標是用有機金屬氣相沈積系統去成長高品質的InGaNAs四元化合物半導體跟量子井結構;更重要的是把這個四元化合物半導體應用在低功率消耗的異質接面電晶體還有發光波長在1.3微米的量子井雷射,來作為在光纖通訊裡收發器模組的主要元件,進而對光纖通訊的發展做出重要的貢獻。

    In this dissertation, the III-N-V alloys and their heterostructures including GaNAs, InGaNAs, GaInNP, GaNAs/GaAs and InGaNAs/GaAs quantum wells have been grown by metal organic vapor phase epitaxy (MOVPE). Several material characterization techniques, such as high resolution X-ray diffraction (HRXRD), Modulation spectroscopy, photoluminescence (PL), secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM) have been performed to characterize the material quality of these epitaxial structures.
    The influence of N incorporation on the band structure of (In)GaAs is described by a simple two-level “band anticrossing” model (BAC). A narrow band of highly localized N states interacts strongly with the extended conduction band edge states of the (In)GaAs host crystal. The N-induced perturbation is enhanced as the N composition increases. The resulting two levels are denotes as E+ and E, and the energy difference between them increases with increasing N composition. The level of E is related to the fundamental bandgap transition energy of (In)GaNAs conduction band. The compositional assessment of grown In(x)Ga(1-x)N(y)As(1-y) alloys in this dissertation is also performed by using BAC model.
    The local N configuration and hydrogen-induced bandgap tuning have been gave a detailed discussion in order to explain the variation of the emission wavelength of InGaNAs/GaAs quantum wells after annealing. The evolution towards more In-N bonds during annealing at elevated temperature is supposed to result in the bandgap blue shift. On the contrary, hydrogen-passivated is found to lead to a complete reversal of the drastic bandgap reduction caused by N, that is, elimination of hydrogen-passivated results in the bandgap red shift. These two factors described above can reasonably explain the variant bandgap after annealing.
    The growth conditions of (In)GaNAs have been well studied in this dissertation. Many growth parameters including growth temperature, indium content, TBAs partial pressure, growth rate and the ratio of DMHy/(DMHy+TBAs) are found to effect the nitrogen incorporation. The temperature dependent photoluminescence is performed and it is found that InGaNAs has lower temperature bandgap dependence than InGaAs. The activation energy is increased with increasing nitrogen composition. In addition, In- and N-rich cluster and its abnormal optical characteristics observed in the highly nitrogen incorporated InGaNAs alloys is supposed to the highly compositional fluctuation of indium and nitrogen.
    The structural and optical properties of GaInNP grown on GaAs substrate are also presented in this dissertation. The spontaneous ordering behavior and temperature dependent near band edge transition energy are also presented. The polarized- high-resolution x-ray rocking curves (HXRC), contactless electroreflectance (CER) and piezoreflectance (PzR) spectra at room temperature show anisotropic character along the [110] and directions, which can prove there exist some degree of the spontaneous ordering phenomenon in the GaInNP alloys. Ordering-induced superlattice-like microstructure observed in high-resolution transmission electron microscope (HTEM) images confirms the spontaneous ordering in the Ga0.46In0.54NxP1-x alloys.
    For the device application, edge-emitting laser structures with InGaNAs quantum well active region has been grown by MOVPE and is fabricated as broad area laser diodes. The laser spectrum emits at 1.2 um, the slope efficiency is 1.94 W/A and the threshold current density is 600 A/cm2. In addition, the double heterojunction bipolar transistors (DHBTs) with low turn-on voltage by using InGaAs/GaAsP and InGaNAs as base material have been successfully fabricated and characterize. A turn-on voltage reduction of 225 mV over the conventional HBT with GaAs base layer is obtained. The device has a peak current gain of 85 and shows good high frequency characteristics of fT and fMAX are 55GHz and 45GHz, respectively.
    The aim of this dissertation is to grow high quality InGaNAs quaternary alloys and quantum wells by MOVPE; the most important thing is application on the low power consumption heterojunction bipolar transistors (HBTs) and quantum well lasers toward 1.3 um emission for use as the principal devices in the transceiver module and thus contributes to the development of optical fiber communication.

    Abstract (in Chinese) ……………………………… i Abstract (in English) ……………………………… ii Acknowledgement …………………………………… vi Contents ……………………………………… vii Table Captions …………………………………… xi Figure Captions …………………………………… x Chapter 1. Introduction 1.1 Introduction ………………………………… 1 1.2 Outline of the dissertation ……………………… 5 Chapter 2. MOVPE System and Related Material Characterization Techniques 2.1 Metal Organic Vapor Phase Epitaxy (MOVPE) system ………… 13 2.2 High resolution X-ray diffraction (HRXRD) ……………… 17 2.3 Photoluminescence (PL) ………………………… 19 2.4 Modulation spectroscopy ………………………… 20 2.5 Secondary ion mass spectrometry (SIMS) ………………… 23 2.6 Transmission Electron Microscopy (TEM) ………………… 24 2.7 Summary …………………………………… 25 Chapter 3. Fundamentals of (In)GaNAs Alloys 3.1 Effect of Nitrogen incorporation on the bandgap of (In)GaAs …… 34 3.2 Band anticrossing model …………………………… 36 3.3 Local N configurations …………………………… 40 3.4 Hydrogen-induced bandgap tuning ……………………… 42 3.5 Compositional assessment of grown In(x)Ga(1-x)N(y)As(1-y) alloys … 43 3.6 Summary ……………………………………… 50 Chapter 4. Structural and Optical Properties of InGaAs/GaAs and (In)GaNAs/GaAs Multiple Quantum Wells (MQWs) 4.1 MOVPE growth of (In)GaNAs alloys ……………………… 61 4.2 Structural and optical properties of InGaAs/GaAs and (In)GaNAs/GaAs MQWs ……………………………………………… 70 4.3 Effects of post growth annealing ………………………73 4.4 Temperature dependent Photoluminescence ………………… 76 4.5 Clustering in highly nitrogen incorporated InGaNAs alloys ……… 77 4.6 Quantum well lasers ……………………………… 83 4.7 Summary ……………………………………… 84 Chapter 5. Structural and Optical Properties of GaInNP grown on GaAs Substrates 5.1 Introduction …………………………………… 122 5.2 MOVPE growth of GaInNP …………………………… 122 5.3 Structural and optical properties of GaInNP grown by MBE ……… 124 5.4 Spontaneous ordering behavior in GaInNP …………………128 5.5 Temperature dependent near band edge transition energy …………130 5.6 Summary ……………………………………… 133 Chapter 6. Fabrication and Characterization of Low Turn-on Voltage Double Heterojunction Bipolar Transistors (DHBTs) 6.1 Introduction …………………………………… 155 6.2 DHBTs’ structures and fabrication …………………… 156 6.3 Low turn-on voltage DHBTs using InGaAs/GaAsP strain-compensated layer as base material …………………………… 159 6.4 Characterization of InGaP/InGaNAs/GaAs DHBTs with low turn-on Voltage ……………………………………………… 164 6.5 Summary ……………………………………… 168 Chapter 7. Conclusions and Future Work 7.1 Conclusions …………………………………… 181 7.2 Suggestions for Future Work ………………………… 183 Bibliography ……………………………………… 188 Appendix ………………………………………… A-1 Vita Publication List

    Chapter 1
    [1.1] J.S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol., vol.17, pp.880-891, 2002.
    [1.2] Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973.
    [1.3] A. Sugimura, K. Daikoku, N. Imoto and T. Miya, “Wavelength dispersion characteristics of single-mode fibers in low-loss region,” IEEE J. Quantum Electron., vol.QE-16, pp.215-225, 1980.
    [1.4] A. Karim, P. Abraham, D. Lofgreen, Y.-J. Chiu, J. Piprek and John Bowers, “Wafer bonded 1.55 μm vertical-cavity lasers with continuous-wave operation up to 105°C,” Appl. Phys. Lett., vol.78, pp.2632-2633, 2001.
    [1.5] Jayaraman, J. C. Geske, M. H. MacDougal, F. H. Peters, T. D. Lowes and T.T. Char, “Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett., vol.34, pp.1405-1407, 1998.
    [1.6] R. Shau, M. Ortsiefer, J. Rosskopf, G. Böhm, F. Köhler and M.-C. Amann, “Vertical-cavity surface-emitting laser diodes at 1.55 μm with large output power and high operation temperature,” Electron. Lett., vol.37, pp.1295-1296, 2001.
    [1.7] S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer and L. A. Coldren, “88°C, continuouswave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol.78, pp.1337-1339, 2001.
    [1.8] M. Yano, H. Imai and M. Takusagawa, “Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers,” J. Appl. Phys., vol.52, pp.3172-3175, 1981.
    [1.9] N.K. Dutta and R.J. Nelson, “Temperature dependence of threshold of InGaAsP/InP double-heterostructure lasers and Auger recombination,” Appl. Phys. Lett., vol.38, pp.407-409, 1981.
    [1.10] F. Quochi, J.E. Cunningham, M. Dinu and J. Shah, “Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29 µm,” Electron. Lett., vol.36, pp.2075-2076, 2000.
    [1.11] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, “Continuous-wave operation of 1.30µm GaAsSb/GaAs VCSELs,” Electron. Lett., vol.37, pp.566-567, 2001.
    [1.12] O.B. Shchekin and D.G. Deppe, “Low-threshold high-T0 1.3-µm InAs quantum-dot lasers due to p-type modulation doping of the active region,” IEEE Photon. Technol. Lett., vol.14, pp.1231-1233, 2002.
    [1.13] J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Zh.I. Alferov and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett., vol.36, pp.1384-1385, 2000.
    [1.14] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Appl. Phys., vol.35, pp.1273-1275, 1996.
    [1.15] A. Ramakrishnan, G. Steinle, D. Supper, C. Degen and G. Ebbinghaus, “Electrically pumped 10 Gbit/s MOVPE-grown monolithic 1.3 µm VCSEL with GaInNAs active region,” Electron. Lett., vol.38, pp.322-324, 2002.
    [1.16] A.W. Jackson, R.L. Naone, M.J. Dalberth, J.M. Smith, K.J. Malone, D.W. Kisker, J.F. Klem, K.D. Choquette, D.K. Serkland and K.M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett., vol.37, pp.355-356, 2001.
    [1.17] J.C. Phillips, “Bonds and Bands in Semiconductors,” eds. A.M. Alper, J.L. Margrave and A.S. Nowick (Academic Press, New York, 1973).

    Chapter 2
    [2.1] G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd Edition, Academic Press, San Diego, 1999.
    [2.2] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells,” J. Cryst. Growth, vol.221, pp.503-508, 2000.
    [2.3] H F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar, “Low-threshold high-temperature operation of 1.2 µm InGaAs vertical cavity lasers,” Electron. Lett., vol.37, pp.957-958, 2001.
    [2.4] I C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnström, E. Odling, J. Malmquist, “1260 nm InGaAs vertical-cavity lasers,” Electron. Lett., vol.38, pp.635-636, 2002.
    [2.5] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine,” Appl. Phys. Lett., vol.70, pp.2861-2863, 1997.
    [2.6] F G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3-µm GaInNAs/GaAs Single Quantum Well Lasers,” Jpn. J. Appl. Phys., vol.41, part1, No.2B, pp.1040-1042, 2002.
    [2.7] G C. Asplund, P. Sundgren, M. Hammar, “Optimization of MOVPE-grown GaInNAs/GaAs quantum wells for 1.3-µm laser applications,” Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, May 12-16, 2002, pp. 619-621.
    [2.8] W. Prost, A. Lindner, P. Velling, A. Wiersch, F. J. Tegude, E. Kuphal, A. Burchard, R. Magerle and M. Deicher, “The role of hydrogen in low-temperature MOVPE growth and carbon doping of In0.53Ga0.47As for InP-based HBT,” J. Cryst. Growth, vol.170, pp.287-291, 1997.
    [2.9] A.C. Jones, “Metalorganic precursors for vapour phase epitaxy,” J. Cryst. Growth, vol.129, pp.728-773, 1993.
    [2.10] C C. Asplund, A. Fujioka, M. Hammar, G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, June 8-11, 1999, pp. 437-440.
    [2.11] X. Yin and F. H. Pollak, “Novel contactless mode of electroreflectance”, Appl. Phys. Lett., vol.59, pp.2305-2307, 1991.
    [2.12] X. Yin, X. Guo, F. H. Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin and C. W. Tu, “Nature of band bending at semiconductor surfaces by contactless electroreflectance”, Appl. Phys. Lett., vol.60, pp.1336-1338, 1992.
    [2.13] F. H. Pollak, F. H. W. Krystek, M. Leibovitch, M. L. Gray and W. S. Hobson, “Contactless electromodulation for the nondestructive, room-temperature analysis of wafer-sized semiconductor device structures,” IEEE J. Selected Topics in Quantum Electron., vol.1, no.4, pp.1002-1010, 1995.
    [2.14] H. Shen, S. H. Pan, F. H. Pollak and R. N. Sacks, “Electromodulation mechanisms for the uncoupled and coupled states of a GaAs/Ga0.82Al0.18As multiple-quantum-well structure”, Phys. Rev. B, vol.37, pp.10919-10930, 1988.
    [2.15] F. H. Pollak, “Modulation spectroscopy under uniaxial stress”, Surf. Sci., vol.37, pp.863-895, 1973.
    [2.16] H. Mathieu, J. Allegre and B. Gil, “Piezomodulation spectroscopy: a powerful investigation tool of heterostructures,” Phys. Rev. B, vol.43, pp.2218-2227, 1991.
    [2.17] Z. Xu and M. Gal, “Temperature modulated photoluminescence in semiconductor quantum wells”, Superlattice and Microstructures, vol.12, no.3, pp.393-396, 1992.

    Chapter 3
    [3.1] M. Weyers, M. Sato and H. Ando, “Red shift of photoluminescence and absorption of dilute GaAsN alloy layers,” Jpn. J. Appl. Phys., vol.31, No.7a, pp.L853-L855, 1992.
    [3.2] M. Kondow, K. Uomi, K. Hosomi and T. Mozume, “Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source,” Jpn. J. Appl. Phys., vol.33, No.8a, pp.L1056-L1058, 1994.
    [3.3] W.G. Bi and C.W. Tu, “Bowing paramter of the band-gap energy of GaNxAs1-x,” Appl. Phys. Lett., vol.70, pp.1608-1610, 1997.
    [3.4] K. Uesugi and I. Suemune, “Bandgap energy of GaNAs alloys grown on (001) GaAs by metalorganic molecular beam epitaxy,” Jpn. J. Appl. Phys., vol.36, No.12a, pp.L1572-L1575, 1997.
    [3.5] S. Francoeur, G. Sivaraman, Y. Qiu, S. Nikishin and H. Temkin, “Luminescence of as-grown and thermally annealed GaAsN/GaAs,” Appl. Phys. Lett., vol.72, No.12a, pp.1857-1859, 1998.
    [3.6] S. Sakai, Y. Ueta and Y. Terauchi, “Band gap energy and band lineup of III-V alloy semiconductors incorporating nitrgen and boron,” Jpn. J. Appl. Phys, vol.32, No.10, pp.4413-4417, 1993.
    [3.7] S.-H. Wei and A. Zunger, “Giant and composition-dependent optical bowing coefficient in GaAsN alloys,” Phys. Rev. Lett., vol.76, pp.664-667, 1996.
    [3.8] U. Tisch, E. Finkman and J. Salzman, “The anomalous bandgap bowing in GaAsN,” Appl. Phys. Lett., vol.81, pp.463-465, 2002.
    [3.9] C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, E.E. Haller, J.F. Geisz and J.M. Olson, “Large, nitrogen-induced increase of the electron effective mass in InyGa1-yNxAs1-x,” Appl. Phys. Lett., vol.76, pp.2409-2411, 2000.
    [3.10] Y. Zhang, A. Mascarenhas, H.P. Xin and C.W. Tu, “Formation of an impurity band and its quantum confinement in heavily doped GaAs:N” Phys. Rev. B, vol.61, pp.7479-7482, 2000.
    [3.11] P.N. Hai, W.M. Chen, I.A. Buyanova, H.P. Xin and C.W. Tu, “Direct determination of electron effective mass in GaNAs/GaAs quantum wells,” Appl. Phys. Lett., vol.77, pp.1843-1845, 2000.
    [3.12] C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J. F. Geisz , K. Hingerl, W. Jantsch, D.E. Mars and W. Walukiewicz, “Band structure and optical properties of InyGa1-yAs1-xNx,” Phys. Rev. B, vol.65, pp.035207, 2001.
    [3.13] W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. olson and S.R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett., vol.82, pp.1221-1224, 1999.
    [3.14] J.D. Perkins, A. Mascarenhas, Y. Zhang, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, “Nitrogen-activated transitions, level repulsion, and band gap reduction in Ga1-yAs1-xNx with x<0.03,” Phys. Rev. Lett., vol.82, pp.3312-3315, 1999.
    [3.15] W. Walukiewicz, W. Shan, J.W. Ager III, D.R. Chamberlin, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson and S.R. Kurtz, Proceedings of the 195th Electrochemical Society Meeting, Seattle, WA (The Electrochemical Soc. Inc., Pennington, NJ,1999), vol.99-11, pp.190.
    [3.16] A. Lindsay and E.P. O’Reilly, “Theory of enhanced bandgap non-parabolicity in GaNxAs1-x and related alloys,” Solid State Commun., vol.112, pp.443-447, 1999.
    [3.17] H.P. Hjalmarson, P. Vogl, D.J. Wolford and J.D. Dow, “Theory of substitutional deep traps in covalent semiconductors,” Phys. Rev. Lett., vol.44, pp.810-813, 1980.
    [3.18] X. Liu, M.-E. Pistol, L. Samuelson, S. Schwetlick and W. Seifert, “Nitrogen pair luminescence in GaAs,” Appl. Phys. Lett., vol.56, pp.1451-1453, 1990.
    [3.19] K.M. Yu, W. Walukiewicz, W. Shan, J.W. Ager III, J. Wu, E.E. Haller, J.F. Geisz, D.J. Friedman and J.M. Olson, “Nitrogen-induced increase of the maximum electron concentration in group III-N-V alloys,” Phys. Rev. B, vol.61, pp.R13337-R13340, 2000.
    [3.20] J. Wu, W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H.P. Xin and C.W. Tu, “Effect of band anticrossing on the optical transitions in GaAsN/GaAs multiple quantum wells,” Phys. Rev. B, vol.64, pp.085320, 2001.
    [3.21] M. Hofmann, A. Wagner, C. Ellmers, C. Schlichenmeier, S. Schäfer, F. Höhnsdorf, J. Koch, W. Stolz, S.W. Koch, W.W. Rühle, J. Hader, J.V. Moloney, E. P. O’Reilly, B. Borchert, A.Yu. Egorov and H. Riechert, “Gain spectra of (GaIn)(NAs) laser diodes for the 1.3-m-wavelength regime,” Appl. Phys. Lett., vol.78, pp.3009-3011, 2001.
    [3.22] C. Skierbiszewski, S.P. Lepkoweki, P. Perlin, T. Suski, W. Jantsch, J. Geisz, “Effective mass and conduction band dispersion of GaAsN/GaAs quantum wells,” Physica E, vol.13, pp.1078-1081, 2002.
    [3.23] W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, H.P. Xin and C.W. Tu, “Band anticrossing in III-N-V alloys,” Phys. Stat. Sol., vol.223, pp.75-85, 2001.
    [3.24] M. Hetterich, M.D. Dawson, A.Yu. Egorov, D. Bernklau and H. Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content,” Appl. Phys. Lett., vol.76, pp.1030-1032, 2000.
    [3.25] P.R.C. Kent and A. Zunger, “Theory of electronic structure evolution in GaAsN and GaPN alloys,” Phys. Rev. B, vol.64, pp.115208, 2001.
    [3.26] P.J.Klar, H.Grüning, W.Heimbrodt, J.Koch, W.Stolz, P.M.A.Vicente, A.M.Kamal Saadi, A.Lindsay and E.P.O´Reilly, “Pressure and temperature dependent studies of GaNxAs1-x/GaAs quantum well structures,” Phys. Stat. Sol. (b), vol.223, pp.163-169, 2001.
    [3.27] P.J. Klar, H. Grüning, J. Koch, S. Schäfer, K. Volz, W. Stolz, W. Heimbrodt, A. M. Kamal Saadi, A. Lindsay and E. P. O'Reilly, “(Ga, In)(N, As)-fine structure of the band gap due to nearest-neighbor configurations of the isovalent nitrogen”, Phys. Rev. B, vol.64, pp.121203, 2001.
    [3.28] K. Kim and A. Zunger, “Spatial Correlations in GaInAsN Alloys and their Effects on Band-Gap Enhancement and Electron Localization”, Phys. Rev. Lett, vol.86, pp.2609-2612, 2001.
    [3.29] R. Magri and A. Zunger, “Real-space description of semiconducting band gaps in substitutional systems”, Phys. Rev. B., vol.44, pp.8672-8684, 1991.
    [3.30] W.A. Harrison, “Electronic structure and the properties of solids”, Dover, New York, 1989, p.176.
    [3.31] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam, “Structural changes during annealing of GaInAsN”, Appl. Phys. Lett., vol.78, pp.748-750, 2001.
    [3.32] A. Polimeni, G. Baldassarri H. v., H.M. Bissiri, M. Capizzi, M. Fischer, M. Reinhardt and A. Forchel, “Effect of hydrogen on the electronic properties of InxGa1–xAs1–yNy/GaAs quantum wells”, Phys. Rev. B, vol.63, pp.201304, 2001.
    [3.33] J. Neugebauer and C.G. Van de Walle, “Hydrogen in GaN: Novel Aspects of a Common Impurity”, Phys. Rev. Lett., vol.75, pp.4452-4455, 1995.
    [3.34] A. Al-Yacoub and L. Bellaiche, “Quantum mechanical effects in (Ga,In)(As,N) alloys”, Phys. Rev. B, vol.62, pp.10847-10851, 2000.
    [3.35] G. Baldassarri H. v. H., M. Bissiri, A. Polimeni, M. Capizzi, M. Fischer, M. Reinhardt, and A. Forchel, “Hydrogen-induced band gap tuning of (InGa)(AsN)/GaAs single quantum wells”, Appl. Phys. Lett., vol.78, pp.3472-3474, 2001.
    [3.36] Bissiri, G. Baldassarri Höger von Högersthal, A. Polimeni, V. Gaspari, F. Ranalli, M. Capizzi, A. Amore Bonapasta, F. Jiang, M. Stavola, D. Gollub, M. Fischer, M. Reinhardt, and A. Forchel, “Hydrogen-induced passivation of nitrogen in GaAs1–yNy”, Phys. Rev. B, vol.65, pp.235210, 2002.
    [3.37] A. Janotti, SB. Zhang, S.H. Wei, C.G. Van de Walle, “Effects of Hydrogen on the Electronic Properties of Dilute GaAsN Alloys”, Phys. Rev. Lett., vol.89, pp.086403, 2002.
    [3.38] Y.S. Kim and K.J. Chang, “Nitrogen-monohydride versus nitrogen-dihydride complexes in GaAs and GaAs1–xNx alloys”, Phys. Rev. B, vol.66, pp.073313, 2002.
    [3.39] J.C. Harmand, G. Ungaro, L. Largeau and G. Le Roux, “Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN”, Appl. Phys. Lett., vol.77, pp.2482-2484, 2000.
    [3.40] R. Bhat, C. Caneau, Lourdes Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition”, J. Cryst. Growth, vol.195, pp.427-437, 1998.
    [3.41] F. Höhnsdorf, J. Koch, A. Hasse, K. Volz, A. Schaper, W. Stolz, C. Giannini and L. Tapfer, “Structural properties of (GaIn)(NAs)/GaAs MQW structures grown by MOVPE”, Physica E, vol.8, pp.205-209, 2000.
    [3.42] F. Höhnsdorf, J. Koch, C. Agert and W. Stolz, “Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy)”, J. Cryst. Growth, vol.195, pp.391-396, 1998.
    [3.43] S. Kurtz, R. Reedy, G.D. Barber, J.F. Geisz, D.J. Friedman, W.E. McMahon and J.M. Olson, “Incorporation of nitrogen into GaAsN grown by MOCVD using different precursors”, J. Cryst. Growth, vol.234, pp.318-322, 2002.
    [3.44] W.Li, M. Pessa and J. Likonen, “Lattice parameter in GaNAs epilayers on GaAs: Deviation from Vegard's law”, Appl. Phys. Lett., vol.78, pp.2864-2866, 2001.
    [3.45] R. People and S.K. Sputz, “Band nonparabolicities in lattice-mismatch-strained bulk semiconductor layers”, Phys. Rev. B, vol.41, pp.8431-8439, 1990.
    [3.46] S. Niki, C.L. Lin, W.S.C. Chang and H.H. Wieder, “Band-edge discontinuities of strained-layer InxGa1–xAs/GaAs heterojunctions and quantum wells”, Appl. Phys. Lett., vol.55, pp.1339-1341, 1989.
    [3.47] S.L. Chuang, “Physics of optoelectronic devices”, John Wiley & Sons, 1995.
    [3.48] J.P. Reithmaier, R. Höger and H. Riechert, “Experimental evidence for the transition from two- to three-dimensional behavior of excitons in quantum-well structures”, Phys. Rev. B, vol.43, pp.4933–4938, 1991.
    [3.49] D. Chandrasekhar, D.J. Smith, S. Strite, M.E. Lin and H. Morkoc, “Characterization of group III-nitride semiconductors by high-resolution electron microscopy”, J. Cryst. Growth, vol.152, pp.135-142, 1995.
    [3.50] M.E. Sherwin, T.J. Drummond, “Predicted elastic constants and critical layer thickness for cubic phase AlN, GaN, and InN on -SiC”, J. Appl. Phys., vol.69, pp.8423-8425, 1991.
    [3.51] J.J. Coleman, "Strained layer quantum well heterostructure lasers", in Peter S. Zory, Jr. (Ed.), “Quantum Well Lasers”, Academic Press, ISBN 0-12-781890-1, pp.378, 1993.

    Chapter 4
    [4.1] R.G. Waters, P.K. York, K.J. Beernink, and J.J. Coleman, “Viable strained-layer laser at λ=1100 nm,” J. Appl. Phys., vol.67, pp.1132-1134, 1990.
    [4.2] M. Kudo and T. Mishima, “Improved photoluminescence properties of highly strained InGaAs/GaAs quantum wells grown by molecular-beam epitaxy,” J. Appl. Phys., vol.78, pp.1685-1688, 1995.
    [4.3] D. Schlenker, T. Miyamoto, Z.B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells,” J. Cryst. Growth, vol.221, pp.503-508, 2000.
    [4.4] T.K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, “High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm,” IEEE Photon. Technol. Lett., vol.14, pp.887-889, 2002.
    [4.5] J.W. Matthews and A.E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth, vol.27, no.5, pp.118-125, 1974.
    [4.6] S. Kurtz, R. Reedy, G.D. Barber, J.F. Geisz, D.J. Friedman, W.E. MaMahon and J.M. Olson, “Incorporation of nitrogen into GaAsN grown by MOCVD using different precursors,” J. Cryst. Growth, vol.234, pp.318-322, 2002.
    [4.7] A. Ougazzaden, Y. Le Bellego, E.V.K. Rao, M. Juhel, L. Leprince and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and teriarybutylarsine,” Appl. Phys. Lett., vol.70, pp.2861-2863, 1997.
    [4.8] U.W. Pohl, C. Möller, K. Knorr, W. Richter, J. Gottfriedsen, H. Schumann, K. Rademann and A. Fielicke, “Tertiarybutylhydrazine: a new precursor for the MOVPE of group III-nitrides,” Mat. Sci. Eng. B, vol.59, pp.20-23, 1999.
    [4.9] Z. Pan, T. Miyamoto, D. Schlenker, S. Sato, F. Koyama and K. Iga, “Low temperature growth of GaInNAs/GaAs quantum wells by metalorganic chemical vapor deposition using tertiarybutylarsine,” J. Appl. Phys., vol.84, pp.6409-6411, 1998.
    [4.10] A. Moto, S. Tanaka, N. Ikoma, T. Tanabe, S. Takagishi, M. Takahashi and T. Katsuyama, “Metalorganic Vapor Phase Epitaxial Growth of GaNAs Using Tertiarybutylarsine (TBA) and Dimethylhydrazine (DMHy),” Jpn. J. Appl. Phys., vol.38, pp.1015-1018, 1999.
    [4.11] S. Kurtz, R. Reedy, B. Keyes, G.D. Barber, J.F. Geisz, D.J. Friedman, W.E. McMahon and J.M. Olson, “Evaluation of NF3 versus dimethylhydrazine as N sources for GaAsN,” J. Cryst. Growth, vol.234, no.2-3, pp.323-326, 2002.
    [4.12] A. Moto, M. Takahashi, S. Takagishi, “Hydrogen and carbon incorporation in GaInNAs,” J. Cryst. Growth, vol.221, pp.485-490, 2000.
    [4.13] M. Heimbuch, A. Holmes, C. Reaves, M. Mack, S. Denbaars and L. Coldren, “Tertiarybutylarsine and tertiarybutylphosphine for the MOCVD growth of low-threshold 1.55 m InxGa1-xAs/InP quantum-well lasers,” J. Electron. Mater., vol.23, pp.87, 1994.
    [4.14] R. T. Lee and G. B. Stringfellow, “Pyrolysis of 1,1 dimethylhydrazine for OMVPE growth,” J. Electron. Mater., vol.28, pp.963-969, 1999.
    [4.15] Y. Qiu, C. Jin, S. Francoeur, S. A. Nikishin, and H. Temkin, “Metalorganic molecular beam epitaxy of GaAsN with dimethylhydrazine,” Appl. Phys. Lett., vol.72, pp.1999-2001, 1998.
    [4.16] C. Jin, S. A. Nikishin, V. I. Kuchinskii, H. Temkin, and M. Holtz, “Metalorganic molecular beam epitaxy of (In)GaAsN with dimethylhydrazine,” J. Appl. Phys., vol.91, pp.56-64, 2002.
    [4.17] E. Bourret-Courchesne, Q.Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium,” J. Cryst. Growth, vol.217, pp.47-54, 2000.
    [4.18] A. J. Ptak, Sarah Kurtz, C. Curtis, R. Reedy, and J. M. Olson, “Incorporation effects in MOCVD-grown (In)GaAsN using different nitrogen precursors,” J. Cryst. Growth, vol.243, pp.231-237, 2002.
    [4.19] X. Wei, G. H. Wang, G. Z. Zhang, X. P. Zhu, X. Y. Ma, and L. H. Chen, “Metalorganic chemical vapor deposition of GaNAs alloys using different Ga precursors,” J. Cryst. Growth, vol.236, no.4, pp.516-522, 2002.
    [4.20] Katsuhiro Uesugi and Ikuo Suemune, “Metalorganic molecular beam epitaxy of GaNAs alloys on (0 0 1)GaAs,” J. Cryst. Growth, vol.189/190, pp.490-495, 1998.
    [4.21] M. Weyers and M. Sato, “Growth of GaAsN alloys by low-pressure metalorganic chemical vapor deposition using plasma-cracked NH3,” Appl. Phys. Lett., vol.62, pp.1396-1398, 1993.
    [4.22] D.J. Friedman, J.F. Geisz, S.R. Kurtz, J.M. Olson, R. Reedy, “Nonlinear dependence of N incorporation on In content in GaInNAs,” J. Cryst. Growth, vol.195, pp.438-443, 1998.
    [4.23] T. Miyamoto, T. Kageyama, S. Makino, D. Schlenker, F. Koyama, K. Iga, “CBE and MOCVD growth of GaInNAs,” J. Cryst. Growth, vol.209, pp.339-344, 2000.
    [4.24] R. Bhat, C. Caneau, L. Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition,” J. Cryst. Growth, vol.195, pp.427-437, 1998.
    [4.25] W.A. Harrison, “Electronic structure and the properties of solids”, Dover, New York, 1989, p.176.
    [4.26] F. Höhnsdorf, J. Koch, C. Agert, W. Stolz, “Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy)”, J. Cryst. Growth, vol.195, pp.391-396, 1989.
    [4.27] C.S. Peng, E.-M. Pavelescu, T. Jouhti, J. Konttinen, I.M. Fodchuk, Y. Kyslovsky and M. Pessa, “Suppression of interfacial atomic diffusion in InGaNAs/GaAs heterostructures grown by molecular-beam epitaxy”, Appl. Phys. Lett., vol.80, pp.4720-4722, 2002.
    [4.28] R. Kudrawiec, G. Sek and J. Misiewicz, “Explanation of annealing-induced blueshift of the optical transitions in GaInAsN/GaAs quantum wells”, Appl. Phys. Lett., vol.83, pp.2772-2774, 2003.
    [4.29] R. Kudrawiec, G. Sek and J. Misiewicz, “Explanation of annealing-induced blueshift of the optical transitions in GaInAsN/GaAs quantum wells”, Appl. Phys. Lett., vol.83, pp.2772-2774, 2003.
    [4.30] X. Liang, D. Jiang, B. Sun, L. Bian, Z. Pan, L. Li, R. Wu, “The effects of concomitant In and N incorporation on the photoluminescence of GaInNAs”, J. Cryst. Growth, vol.243, pp.261-266, 2002.
    [4.31] R.J. Potter, N. Balkan, H. Carrère, A. Arnoult, E. Bedel and X. Marie, “Effect of nitrogen fraction on the temperature dependence of GaNAs/GaAs quantum-well emission”, Appl. Phys. Lett., vol.82, pp.3400-3402, 2003.
    [4.32] J. Misiewicz, P. Sitarek, K. Ryczko, R. Kudrawiec, M. Fischer, M. Reinhardt, A. Forchel, “Influence of nitrogen on carrier localization in InGaAsN/GaAs single quantum wells”, Microelectronics Journal, vol.34, pp.737-739, 2003.
    [4.33] A. Kaschner, T. Lüttgert, H. Born, A. Hoffmann, A. Yu. Egorov and H. Riechert, “Recombination mechanisms in GaInNAs/GaAs multiple quantum wells”, Appl. Phys. Lett., vol.78, pp.1391-1393, 2001.
    [4.34] L. Grenouillet, C. Bru-Chevallier, G. Guillot, P. Gilet, P. Duvaut, C. Vannuffek, A. Million and A. Chenevas-Paule, “Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well”, Appl. Phys. Lett., vol.76, pp.2241-2243, 2000.
    [4.35] B.Q. Sun, D.S. Jiang, Z. Pan, L.H. Ki, R.H. Wu, “Optical transitions and type-II band lineup of MBE-grown GaNAs/GaAs single-quantum-well structures”, J. Cryst. Growth, vol.227-228, pp.501-505, 2001.
    [4.36] R.J. Potter, N. Balkan, X. Marie, M. Senes, H. Carrère, A. Arnoult and C. Fontaine, “Time resolved PL study of GaInNAs quantum wells”, IEE Proc.-Optoelectron., vol.150, pp.75-76, 2003.
    [4.37] X.P. Xin, K.L. Kavanagh, Z.Q. Zhu and C.W. Tu, “Observation of quantum dot-like behavior of GaInNAs in GaInNAs/GaAs quantum wells”, Appl. Phys. Lett., vol.74, pp.2337-2339, 1999.
    [4.38] X.P. Xin, K.L. Kavanagh, Z.Q. Zhu and C.W. Tu, “Quantum dot-like behavior of GaInNAs in GaInNAs/GaAs quantum wells grown by gas-source molecular-beam epitaxy”, J. Vac. Sci. Technol. B, vol.17, pp.1649-1653, 1999.
    [4.39] R. Singh, R.J. Molnar, M.S. Ünlü and T.D. Moustakas, “Intensity dependence of photoluminescence in GaN thin films”, Appl. Phys. Lett., vol.64, pp.336-338, 1994.
    [4.40] J.I. Pankove, “Optical Processes in Semiconductors”, Dover, New York, 1975.
    [4.41] M. Vening, D.J. Dunstan and K.P. Homewood, “Evidence for EL6 (Ec– 0.35 eV) acting as a dominant recombination center in n-type horizontal Bridgman GaAs”, J. Appl. Phys., vol.61, pp.5047-5050, 1987.
    [4.42] T.K. Ng, S.F. Yoon, W.J. Fan, W.K. Loke, S.Z. Wang, S.T. Ng, “Photoluminescence quenching mechanism is GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy”, J. Vac. Sci. Technol. B, vol.21, pp.2324-2328, 2003.

    Chapter 5
    [5.1] E. Greger, K. H. Gulden, P. Riel, H. P. Schweizer, M. Moser, G. Schmiedel, P. Kiesel and G. H. Dohler, “Polarization effect in light emitting diodes with ordered GaInP active layers,” Appl. Phys. Lett., vol.68, pp.2383-2385, 1996.
    [5.2] Z. L. Liau, S. C. Palmateer, S. H. Groves, J. N. Walpole and L. J. Missaggia, “Low-threshold InGaAs strained-layer quantum-well lasers ( =0.98 µm) with GaInP cladding layers and mass-transported buried heterostructure,” Appl. Phys. Lett., vol.60, pp.6-8, 1992.
    [5.3] T. Katsuyama, T. Yoshida, J. Shinkai, J. Hashimoto, and H. Hayashi, “High temperature ( 150°C) and low threshold current operation of AlGaInP/GaxIn1–xP strained multiple quantum well visible laser diodes,” Appl. Phys. Lett., vol.59, pp.3351-3353, 1991.
    [5.4] D. A. Ahmari, G. Raghavan, Q. J. Hartmann, M. L. Hattendorf, M. Peng, and G. E. Stillman, “Temperature dependence of InGaP/GaAs heterojunction bipolar transistor DC and small-signal behavior,” IEEE Trans. Electron. Dev., vol.46, No.4, pp.634-640, 1999.
    [5.5] H. Y. Yow, P. A. Houston, C. C. Button, T. W. Lee, and S. J. Roberts, “Heterojunction bipolar transistors in AlGaInP/GaAs grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., vol.76, No.12, pp.8135-8141, 1994.
    [5.6] Y. F. Yang, C. C. Hsu and E. S. Yang, “Integration of GalnP/GaAs heterojunction bipolar transistors and high electron mobility transistors,” IEEE Electron Device Lett. , vol.17, No.7, pp.363-365, 1996.
    [5.7] K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, and J. M. Olson, “29.5%-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett., vol.65, No.8, pp.989-991, 1994.
    [5.8] J. D. Perkins, A. Mascarenha, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs1-xNx with x < 0.03,” Phys. Rev. Lett., vol.82, pp.3312-3315, 1999.
    [5.9] K. M. Yu, W. Walukiewicz, J. Wu, J. W. Beeman, J. W. Ager III, E. E. Haller, W. Shan, H. P. Xin and C. W. Tu, “Synthesis of InNxP1–x thin films by N ion implantation,” Appl. Phys. Lett., vol.78, No.8, pp.1077-1079, 2001.
    [5.10] W. Shan, W. Walukiewicz, K. M. Yu, J. Wu, J. W. Ager III, E. E. Haller, H. P. Xin and C. W. Tu, “Nature of the fundamental band gap in GaNxP1–x alloys,” Appl. Phys. Lett., vol.76, No.22, pp.3251-3253, 2000.
    [5.11] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys,” Phys. Rev. Lett., vol.82, No.6, pp.1221-1224, 1999.
    [5.12] P. C. Chang, A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou and E. Armour, “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl. Phys. Lett., vol.76, No.16, pp.2262-2264, 2000.
    [5.13] Y. G. Hong, R. André and C. W. Tu, “Gas-source molecular beam expitaxy of GaInNP/GaAs and a study of its band lineup,” J. Vac. Sci. Technol. B, vol.19, No.4, pp.1413-1416, 2001.
    [5.14] R. J. Welty, Y. G. Hong, H. P. Xin, K. Mochizuki, C. W. Tu, P. M. Asbeck, Proceedings 2000 IEEE/Cornell Conference on High Performance Devices, Piscataway, USA, pp.33.
    [5.15] Y. G. Hong, F. S. Juang, M. H. Kim and C. W. Tu, “Growth and characterization of GaInNP grown on GaAs substrates,” J Crystal Growth, vol.251, No.1-4, pp.437-442, 2003.
    [5.16] C. W. Tu, Y. G. Hong, R. André and H. P. Xin, Proceedings 2001 International Conference on Indium Phosphide and Related Materials 13th IPRM, Nara, Japan, pp.591-594.
    [5.17] A. J. Ptak, S. Kurtz, C. Curtis, R. Reedy and J. M. Olson, “Incorporation effects in MOCVD-grown (In)GaAsN using different nitrogen precursors,” J. Cryst. Growth, vol.243, No.2, pp.231-237, 2002.
    [5.18] Y. P. Varshni, Physica, vol.34, pp.149, 1967.
    [5.19] P. Lantenschlager, M. Garriga, S. Logothetidis and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B, vol.35, No.17, pp.9174-9189, 1987.
    [5.20] L. Viña, S. Logothetidis and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B, vol.30, No.4, pp.1979, 1984.
    [5.21] F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng. R, vol.10, No.7-8, pp.275, 1993.
    [5.22] C. W. Tu, W. G. Bi, Y. Ma, J. P. Zhang, L. W. Wang and S. T. Ho, “A novel material for long-wavelength lasers: InNAsP,” IEEE J. Sel. Top. Quantum Electron., vol.4, No.3, pp.510-513, 1998.
    [5.23] J. N. Baillargeon, K. Y. Cheng, G. E. Hofler, P. J. Pearah and K. C. Hsieh, “Luminescence quenching and the formation of the GaP1–xNx alloy in GaP with increasing nitrogen content,” Appl. Phys. Lett., vol.60, No.20, pp.2540-2542, 1992.
    [5.24] W. G. Bi and C. W. Tu, “Bowing parameter of the band-gap energy of GaNxAs1 – x,” Appl. Phys. Lett., vol.70, No.12, pp.1608-1610, 1997.
    [5.25] G. Hatakoshi, K. Itaya, M. Ishikawa, M. Okajima and Y. Uematsu, “Short-wavelength InGaAlP visible laser diodes,” IEEE J. Quantum Electron., vol.27, No.6, pp.1476-1482, 1991.
    [5.26] H. Sugawara, M. Ishikawa and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol.58, No.10, pp.1010-1012, 1991.
    [5.27] A. Gomyo, T. Suzuki and S. Iijima, “Observation of Strong Ordering in GaxIn1-xP alloy semiconductors,” Phys. Rev. Lett., vol.60, No.25, pp.2645-2648, 1988.
    [5.28] S. H. Wei and A. Zunger, “Optical properties of zinc-blende semiconductor alloys: Effects of epitaxial strain and atomic ordering,” Phys. Rev. B, vol.49, No.20, pp.14337-14351, 1994.
    [5.29] P. Ernst, C. Geng, F. Scholz, H. Schweizer, Y. Zhang and A. Mascarenhas, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett., vol.67, No.16, pp.2347-2349, 1995.
    [5.30] H. Kressel, C. I. Nuese and I. J. Ladany, “Luminescence from In0.5Ga0.5P prepared by vapor-phase epitaxy,” J. Appl. Phys., vol.44, No.7, pp.3266-3272, 1973.
    [5.31] Y. K. Su, C. H. Wu, S. H. Hsu, S. J. Chang, W. C. Chen, Y. S. Huang, and H. P. Hsu, “Observation of spontaneous ordering in the optoelectronic material GaInNP,” Appl. Phys. Lett., vol.84, pp.1299-1301, 2004.
    [5.32] Y. K. Su, C. H. Wu, Y. S. Huang, H. P. Hsu, W. C. Chen, S. H. Hsu, and S. J. Chang, “Piezoreflectance and contactless electroreflectance spectra of an optoelectronic material: GaInNP grown on GaAs substrates,” J. Cryst. Growth, vol.264, pp.357-362, 2004.
    [5.33] K. Uesugi, I. Suemune, T. Hasegawa, T. Akutagawa and T. Nakamura, “Temperature dependence of band gap energies of GaAsN alloys,” Appl. Phys. Lett., vol.76, No.10, pp.1285-1287, 2000.
    [5.34] M. -A. Pinault and E. Tournie, “On the origin of carrier localization in Ga1–xInxNyAs1–y/GaAs quantum wells,” Appl. Phys. Lett., vol.78, No.11, pp.1562-1564, 2001.
    [5.35] T. Kanata, M. Nishimoto, H. Nakayama and T. Nishino, “Valence-band splitting in ordered Ga0.5In0.5P studied by temperature-dependent photoluminescence polarization,” Phys. Rev. B, vol.45, No.12, pp.6637-6642, 1992.
    [5.36] M. C. Delong, D. J. Mowbray, R. A. Hogg, M. S. Skolnick, M. Hopkinson, J. P. R. David, P. C. Taylor, S. R. Kurtz and J. M. Olson, “Photoluminescence, photoluminescence excitation, and resonant Raman spectroscopy of disordered and ordered Ga0.52In0.48P,” J. Appl. Phys., vol.73, No.10, pp.5163-5172, 1993.
    [5.37] L. Grenouillet, C. Bru-Chevallier, G. Guillot, P. Gilet, P. Duvaut, C. Vannuffel, A. Million and A. Chenevas-Paule, “Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well,” Appl. Phys. Lett., vol.76, No.16, pp.2241-2243, 2000.
    [5.38] S. Shirakata, M. Kondow and T. Kitatani, “Photoluminescence and photoreflectance of GaInNAs single quantum wells,” Appl. Phys. Lett., vol.79 No.1, pp.54-56, 2001.
    [5.39] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Berlin: Springer), 1996.
    [5.40] M. Kondow, S. Minagawa and S. Satoh, “Raman scattering from AlGaInP,” Appl. Phys. Lett., vol.51, No.24, pp.2001-2003, 1987.
    [5.41] H. M. Cheong, A. Mascarenhas, P. Ernst and C. Geng, “Effects of spontaneous ordering on Raman spectra of GaInP2,” Phys. Rev. B, vol.56, No.4, pp.1882-1887, 1997.
    [5.42] G. Y. Rudko, I. A. Buyanova, W. M. Chen, H. P. Xin and C. W. Tu, “Temperature dependence of the GaNxP1–x band gap and effect of band crossover,” Appl. Phys. Lett., vol.81, No.21, pp.3984-3986, 2002.

    Chapter 6
    [6.1] M. Schubler, V. Krozer, J. Pfeiffer, T. Statzner, W.Y. Lee, H.L. Hartnagel, “AlGaAs/GaAs and GaInP/GaAs HBT for High Temperature Microwave Operation,” Signals, Systems, and Electronics, 1995. ISSSE '95, Proceedings., 1995 URSI International Symposium on, pp.25-27 Oct. 1995.
    [6.2] J. H. Kim, J. H. Kim, Y. S. Noh and C. S. Park, “Linearised HBT MMIC power amplifier with partially RF coupled active bias circuit for W-CDMA portable terminals applications,” Electron Lett., vol.39, pp.781-783, 2003.
    [6.3] J. H. Kim, J. H. Kim, Y. S. Noh and C. S. Park, “An InGaP-GaAs HBT MMIC smart power amplifier for W-CDMA mobile handsets,” IEEE J. Solid-St. Circ., vol.38, pp.905-910, 2003.
    [6.4] J. M. Lee, S. I. Kim, B. G. Min and K. H. Lee, “Fabrication and characteristics of multi-finger InGaP/GaAs power HBTs for high power microwave applications,” J. Korean Phys. Soc., vol.42, pp.S234-S237, 2003.
    [6.5] H. Ito, S. Yamahata, N. Shigekawa and K. Kurishima, “Heavily carbon doped base InP/InGaAs heterojunction bipolar transistors grown by two-step metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Part.1 vol.35, pp.6139-6144, 1996.
    [6.6] H. Ito and T. Ishibashi, “GaAs/In0.08Ga0.92As double heterojunction bipolar transistors with a lattice-mismatched base,” Jpn. J. Appl. Phys., vol.25, No.5, pp.L421-L424, 1986.
    [6.7] C.H. Wu, Y.K. Su, S.J. Chang, Y.S. Huang and H.P. Hsu, “Device characteristics of the GaAs-based heterojunction bipolar transistors using InGaAs/GaAsP strain-compensated layer as base material,” Semicond. Sci. Technol., will be presented soon in vol.19, 2004.
    [6.8] C. Monier, A. G. Baca, P. C. Chang, F. D. Newman, N. Y. Li, S. Z. Sun, E. Armour, H. Q. Hou, “Significant operating voltage reduction on high-speed GaAs-based heterojunction bipolar transistors using a low band gap InGaAsN base layer,” IEEE Transaction on Elect. Dev., vol.49, pp.1329-1335, 2002.
    [6.9] P. C. Chang, N. Y. Li, A. G. Baca, H. Q. Hou, C. Monier, J. R. Laroche, F. Ren and S. J. Pearton, “Device characteristics of the GaAs/InGaAsN/GaAs p-n-p double heterojunction bipolar transistor,” IEEE Elect. Dev. Lett., vol.22, pp.113-115, 2001.
    [6.10] P. M. DeLuca, C. R. Lutz, R. E. Welser, T. Y. Chi, E. K. Huang, R. J. Welty and P. M. Asbeck, “Implementation of reduced turn-on voltage InGaP HBTs using graded GaInAsN base regions,” IEEE Elect. Dev. Lett., vol.23, pp.582-584, 2002.
    [6.11] R. E. Welser, P. M. DeLuca and N. Pan, “Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-xInxAs1-yNy base layers,” IEEE Elect. Dev. Lett., vol.21, pp.554-556, 2000.
    [6.12] R. Bhat, C. Caneau, Lourdes Salamanca-Riba, W. Bi, C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition,” J. Cryst. Growth, vol.195, pp.427-437, 1998.
    [6.13] Y. Q. Yu, X. Y. Qin, B. B. Huang, J. Y. Wei, H. L. Zhou, J. Q. Pan, W. L. Chen, Y. Qi , X. Y. Zhang and Z. X. Ren, “MOCVD growth of strain-compensated multi-quantum wells light emitting diode,” Vacuum, vol.69, pp.489-493, 2003.
    [6.14] N. Tansu and L. J. Mawst, “High-performance strain-compensated InGaAs-GaAsP-GaAs (=1.17 m) quantum-well diode lasers,” IEEE Photon. Tech. Lett., vol.13, pp.179-181, 2001.
    [6.15] H. Asano, M. Wada, T. Fukunaga and T. Hayakawa, “Temperature-insensitive operation of real index guided 1.06 m InGaAs/GaAsP strain-compensated single-quantum-well laser diodes,” Appl. Phys. Lett., vol.74, pp.3090-3092, 1999.
    [6.16] K. Bacher, S. Massie and M. Seaford, “Molecular beam epitaxy of strain-compensated InGaAs/GaAsP quantum-well intersubband photodetectors,” J. Cryst. Growth, vol.175, pp.977-982, 1997.
    [6.17] N.J. Ekins-Daukes, K.W.J. Barnham, J.P. Connolly, J.S. Roberts, J.C. Clark, G. Hill and M. Mazzer, “Strain-balanced GaAsP/InGaAs quantum well solar cells,” Appl. Phys. Lett., vol. 75, pp. 4195-4197, 1999.
    [6.18] X. Yin, F. H. Pollak, L. Pawlowicz, T. O’Neill and M. Hafizi, “Characterization of GaAs/Ga1-xAlxAs heterojunction bipolar transistor structures using photoreflectance,” Appl. Phys. Lett., vol.56, pp.1278-1280, 1990.
    [6.19] C. J. Lin, Y. S. Huang, N. Y. Li and K. K. Tiong, “Polarized-photoreflectance characterization of an InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor structure,” J. Appl. Phys., vol.90, pp.4565-4569, 2001.
    [6.20] Materials Aspects of GaAs and InP Based Structure, edit by V. Swaminathan and A.T. Macrander, Prentice Hall, Englewood Cliffs, (New Jersey, 1991), pp.27.
    [6.21] W. Liu, Fundamentals of III-V Devices, HBTs, MESFETs, and HFETs/HEMTs. New York: Wiley, 1999, pp.143-151.
    [6.22] D. J. Arent, K. Deneffe, C. V. Hoof, J. D. Boeck and G. Borghs, “Strain effects and band offsets in GaAs/InGaAs strained layered quantum structures,” J. Appl. Phys., vol.66, pp.1739-1747, 1989.
    [6.23] Patrick Roblin and Hans Rohdin, ”High-speed heterostructure devices: from device concepts to circuit modeling,” Cambridge UK, Cambridge University Press, New York, pp.342, 2002.
    [6.24] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Appl. Phys., vol.35, No.2B, pp.1273-1275, 1996.
    [6.25] S. Sato, Y. Osawa and T. Saitoh, “Room-Temperature Operation of GaInNAs/GaInP Double-Heterostructure Laser Diodes Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol.36, No.5A, pp.2671-75, 1997.
    [6.26] N. Y. Li, P. C. Chang, A. G. Beca, X. M. Xie, P. R. Sharps and H. Q. Hou, “DC characteristics of MOVPE-grown Npn InGaP/InGaAsN DHBTs,” Electron. Lett., vol.36, No.1, pp.81-83, 2000.
    [6.27] R. E. Welser, P. M. Deluca, A. C. Wang, and N. Pan, “Low Vbe GaInAsN Base Heterojunction Bipolar Transistors,” IEICE Trans. Electron., vol.E84-C, No.10, pp.1389-1393, 2000.
    [6.28] R. E. Welser, P. M. Deluca and N. Pan, “Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-xInxAs1-yNy base layers,” Electron. Dev. Lett., vol.21, No.12, pp.554-556, 2000.
    [6.29] P. C. Chang, A. G. Beca, N. Y. Li, X. M. Xie, H. Q. Hou and E. Armour, “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl. Phys. Lett., vol.76, No.16, pp.2262-2264, 2000.
    [6.30] R. Bhat, C. Caneau, Lourdes Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition,” J. Cryst. Growth, vol.195, No.1-4, pp.427-437, 1998.
    [6.31] F. Hohnsdorf, J. Koch, C. Agert and W. Stolz, “Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy),” J. Cryst. Growth, vol.195, No.1-4, pp.391-396, 1998.
    [6.32] F. Hohnsdorf, J. Koch, A. Hasse, K. Volz, A. Schaper, W. Stolz, C. Giannini and L. Tapfer, “Structural properties of (GaIn) (NAs)/GaAs MQW structures grown by MOVPE,” Physica E, vol.8, No.3, pp.205-209, 2000.
    [6.33] H. P. Xin, C. W. Tu and M. Geva, “Annealing behavior of p-type Ga0.892In0.108NxAs1–x (0 X 0.024) grown by gas-source molecular beam epitaxy,” Appl. Phys. Lett., vol.75, No.10, pp.1416-1418, 1999.
    [6.34] D. J. Friedman, J. F. Geisz, S. R. Kurtz, J. M. Olson and R. Reedy, “Nonlinear dependence of N incorporation on In content in GaInNAs,” J. Cryst. Growth, vol.195, No.1-4, pp.438-443, 1998.

    Chapter 7
    [7.1] B. Mazhari, G.B. Gao and H. Morkoc, “Collector-emitter offset voltage in heterojunction bipolar transistors,” Solid-State Electron., vol.34, pp.315-321, 1991.
    [7.2] R.J. Welty, Y.G. Hong, H.P. Xin, K. Mochizuki, C.W. Tu and P.M. Asbeck, “Nitrogen incorporation in GaInP for novel heterojunction bipolar transistors,” IEEE/Cornell conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, pp.33-40, 2000.

    下載圖示 校內:2009-06-23公開
    校外:2009-06-23公開
    QR CODE