| 研究生: |
許友綸 Hsu, Yu-Lun |
|---|---|
| 論文名稱: |
SenroDR - 新的可微分渲染框架 SenroDR - A New Differentiable Rendering Framework |
| 指導教授: |
朱威達
Chu, Wei-Ta |
| 共同指導教授: |
胡敏君
Hu, Min-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 光跡跟蹤 、渲染 、微分 |
| 外文關鍵詞: | Differential, Rendering, Path Tracing |
| 相關次數: | 點閱:215 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
渲染意旨將數位資訊轉化為圖片或影片媒體的過程。由於場景的不連續性,長久以來渲染被認為不可能微分。可微分渲染今天仍然是一個相對較新的主題,2018年才由李子懋 [1]首先找出其解。現在市面上有兩個通用可微分渲染器(以下簡稱DR),即OpenDR [2]與Redner,當然還有其他特殊用途或是玩具實作 [3] [4]。然而,這些現有的DR都無法滿足我們的需求。我們想要一個快速,且合理使用記憶體,並且具有彈性的DR供我們做研究。因此,我們做了一個新的DR - SenroDR。我們也將在此介紹SenroDR框架。本篇論文也將redner的邊緣採樣法擴展為曲線採樣法,這使我們支援更多不同的物體形狀,而我們也在SenroDR支援二次曲面與其微分。而實驗將以展示本論文contribution為主軸去設計,檢驗本研究之有效性、效能(速度和記憶體用量)、曲面採樣的正確性、彈性
Rendering is the process of converting digital information into image or video media. Due to the discontinuity of the scene, rendering has long been considered impossible to differentiate. Differetiable rendering(DR) is a relatively new topic in computer graphics. It’s unbiased solution was found in the year 2018 by Lee [1]. There are two existing general-purpose DR in the world and some special-purpose or toy DR available. However, None of them meet our need. We need a more efficient in both speed and memory consumption and flexible DR for research. Thus, here we present our new differentiable renderer, SenroDR. In thesis, we briefly introduce and break down our SenroDR framework. Our other contribution is mathematical derivation of curve sampling, which is extended from edge sampling technique developed by Lee [1].And we designed several different experiments based on the contribution of the paper.
[1] Tzu-Mao Li. Differentiable monte carlo ray tracing through edge sampling. Siggraph Asia.
[2] Michael J. LOPER, Matthew M.; BLACK. Opendr: An approximate differentiable
renderer. pages 154–169, 2014.
[3] Paul Henderson and Vittorio Ferrari. Learning to generate and reconstruct 3d meshes with only 2d supervision. In British Machine Vision Conference (BMVC), 2018.
[4] Matthew Mirman. Mentisoculi. https://github.com/mmirman/MentisOculi, 2018.
[5] Yuanchun TAN, Ying; ZHU. Fireworks algorithm for optimization. pages 355–364, 2010.
[6] Volker BLANZ. A morphable model for the synthesis of 3d faces. Siggraph, pages
187–194, 1999.
[7] et al GKIOULEKAS, Ioannis. Inverse volume rendering with material dictionaries.
ACM Transactions on Graphics (TOG), 2013.
[8] James T Kajiya. he rendering equation. Siggraph, page 143–150, 1986.
[9] Donald P. Greenberg Cindy Goral, Kenneth E. Torrance and B. Modeling the interaction of light between diffuse surfaces.
[10] Henrik Wann JENSEN. Global illumination using photon maps. Rendering Techniques’ 96, pages 21–30.
[11] Eric VEACH. Robust monte carlo methods for light transport simulation. 1997.
[12] Marc ten Bosch. Python binding for nvidia optix prime. http://marctenbosch.com/photon/mbosch_intersection.pdf, 2004.
[13] Hsu YU-LUN. Python binding for nvidia optix prime. https://ppt.cc/fwJxIx, 2019.