| 研究生: |
陳德一 Chen, Te-Yi |
|---|---|
| 論文名稱: |
摻雜與製程條件對於鈦酸鉛陶瓷特性之影響及其在表面聲波元件之應用 The Effects of Doping and Process Conditions on the Characterization of PbTiO3-based Ceramics and Its Applications on SAW Devices |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 表面聲波元件 、摻雜 、陶瓷 、鈦酸鉛 、燒結 、極化 |
| 外文關鍵詞: | poling, sintering, doping, SAW, ceramic, PbTiO3 |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦酸鉛陶瓷是一種具有優良壓電性的材料,其厚度振動模式之機電耦合因數大於0.5。鈦酸鉛陶瓷可藉由不同雜質原子的加入與製程參數的調整,使其壓電性與介電性產生變化。
在本論文中,我們用傳統陶瓷製程製作以釤(Sm)修飾型鈦酸鉛陶瓷為主,並且摻雜了鈣(Ca)、鍶(Sr)和鎘(Cd)等二價離子,探討摻雜對特性所造成的影響。我們發現在釤修飾型鈦酸鉛陶瓷中摻雜了鈣、鍶和鎘,與其它修飾型鈦酸鉛陶瓷比較,可以得到一較高的厚度振動模式之機電耦合因數。另外,我們將鈣與鍶同時加入鈦酸鉛陶瓷,並藉由製程溫度與極化電場的調整,製作出具有接近零的頻率溫度係數,並且保持良好壓電特性之陶瓷體。燒結緻密的鈦酸鉛陶瓷結構性好且壓電性佳,經由適度的表面拋光處理後,可以應用於基板材料,製作出具有高機電耦合因數的表面聲波元件。
我們以射頻磁控濺鍍法,在前述之表面聲波元件上,成長(002)軸向之氧化鋅薄膜,藉由調變不同製程參數,如氮氣與氧氣的比例與濺鍍功率,研究不同製程參數所成長的薄膜,對於表面聲波特性的影響。在氧化鋅薄膜的結構分析方面,我們利用X光繞射儀、掃描式電子顯微鏡、原子力顯微鏡來檢測薄膜晶體結構、內應力、與薄膜表面粗糙度。
在薄膜成長條件為總壓力10mTorr,氧氣與氮氣比1:1以及70瓦的濺鍍功率之下,可以在鈦酸鉛壓電陶瓷做為基板的表面聲波元件上,成功沉積具有(002)優選取向的氧化鋅薄膜。具有ZnO/IDT/PT (IDT:指叉狀電極; PT:鈦酸鉛壓電陶瓷基板)結構的表面聲波元件,其機電耦合因數與頻率溫度係數,均較沒有氧化鋅薄膜覆蓋的元件為佳。
Lead titanate (PbTiO3) family ceramics have large electromechanical coupling factor kt, where kt is larger than 50﹪, which can be utilized for the piezoelectric applications. By doping and properly varying the process parameters, it will improve the properties of the ceramics.
In this research, effects of calcium, strontium and cadmium dopants on the piezoelectric and dielectric properties of Sm-modified PbTiO3 ceramics have been investigated. Sm-modified PbTiO3 ceramics were prepared by conventional mixed-oxide methods. We successfully showed that Ca, Sr and Cd additives are helpful to obtain much higher thickness electromechanical coupling coefficient, kt, than that of conventional PbTiO3 based ceramics and still keep small planar electromechanical coupling coefficient, kp. In addition, by properly varying the sintering and poling conditions, the samples with zero temperature coefficient of resonant frequency were fabricated. Microstructural and compositional analyses of these doped ceramics have been carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface acoustic wave (SAW) filters were fabricated using these ceramic substrates and the properties, including phase velocity and electromechanical coupling coefficient, were measured.
Poly-crystal ZnO films with c-axis (002) orientation have been successfully grown on the lead-based ceramic substrates by r.f. magnetron sputtering technique. The deposited films were characterized as a function argon-oxygen gas flow ratio and r.f. power. Crystalline structures of the films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Highly oriented films with c-axis normal to the substrates can be obtained by depositing under a total pressure of 10mTorr containing 50% argon and 50% oxygen and r.f. power of 70W. The phase velocity, electromechanical coupling coefficient and temperature coefficient of frequency of SAW device with ZnO/IDT/PT (IDT: Inter-digital transducer; PT: PbTiO3 ceramics) structure were investigated. It shows that the preferred oriented ZnO film is beneficial for improving the electromechanical coupling coefficient of SAW device.
References:
[1] T. Takahashi, Ceram. Bull. 69 (1990) 691.
[2] S. Ikegami, I. Ueda, T. Nagata, J. Acoust. Soc. Am. 50 (1971) 1060.
[3] H. Takeuchi, S. Jyomura, E. Yamamoto, Y. Ito, J. Acoust. Soc. Am. 72
(1982) 1114.
[4] K. Takeuchi, D. Damjanovic, T. R. Gur uraja, S. J. Jang, L. E. Cross,
Proc. of the Sixth ISAF IEEE, (1986) 402.
[5] J. Shenglin, Z. Xuli, W. Xiaozhen, W. Xianghong, Piezoelect. Acoust. 17
(1995) 26.
[6] I. Ueda, S. Ikegami, Jap. J. Appl. Phys. 7 (1968) 236.
[7] O. Ohnishi, H. Kishie, A. Iwamoto, Y. Sasaki, T. Zaitsu, T. Inoue, IEEE
Ultrason. Symp. (1992) 483.
[8] K. M. Rittenmyer, R. Y. Ting, Ferroelectrics. 110 (1990) 171.
[9] J. N. Kim, M. J. Haun, S. J. Jang, L. E. Cross, X. R. Xue, IEEE Trans.
Ultrason. Ferroelect. Freq. Contr. 36 (1989) 389.
[10] D. Damjanovic, T. R. Gururaja, L. E. Cross, Am. Ceram. Soc. Bull. 66
(1987) 699.
[11] W. R. Xue, J. N. Kim, S. J. Jang, L. E. Cross, R. E. Newnham, Jap. J.
Appl. Phys., 24 (1985) 718.
[12] W. R. Xue, P. W. Lu, W. Huebner, Proc. of the Ninth ISAF, IEEE (1994) 101.
[13] G. Zhilun, L. Longtu, G. Suhua, Z. Xiaowen, J. Am. Ceram. Soc. 72 (1989)
486.
[14] C. C. Tseng, J. Appl. Phys. 38 (1967) 4281.
[15] M. Kodama, H. Egami, S. Yoshida, Jap. J. Appl. Phys. 14 (1975) 1847.
[16] Y. Ito, H. Takeuchi, S. Jyomura, K. Nagatsuma, H. Ashida, Appl. Phys.
Lett. 35 (1979) 595.
[17] H. Takeuchi, K. Yamashita, J. Appl. Phys. 53 (1982) 6147.
[18] G. Feuillard, M. Lethiecq, Y. Amazit, D. Certon, C. Millar, F. Patat, J.
Appl. Phys. 71 (1993) 6523.
[19] G. Feuillard, M. Lethiecq, Y. Janin, L. Tessier, L. Pourcelot, IEEE
Trans. Ultrason. Ferroelectric Freq. Contr. 44 (1997) 194.
[20] D. Damjanovic, W. Wolny, H. Engan, M. Lethiecq, L. Pardo, IEEE Intern.
Freq. Contr. Symp. (1998) 770.
[21] S. Wanuga, T. A. Midford, J. P. Dietz, Ultrasonics Symposium (1965).
[22] G. A. Rozgonyi, W. J.Polito, Appl. Phy. Lett. 8 (1966) 220.
[23] N. F. Foster, G. A. Rozgonyi, Appl. Phy. Lett. 8 (1966) 221.
[24] A. J. DeVries, R. Adler, Proc. IEEE 64 (1976) 671.
[25] R. M. Hays, C. S. Hartmann, Proc. IEEE 64 (1976) 652.
[26] M. N. Kamalasanan, S. Chandra, Thin Solid Films 288 (1996) 112-115.
[27] F. D. Paraguay, W. L. Estrada, D. R. N. Acosta, E. Andrade, M. Yoshida,
Thin Solid Films 350 (1999) 192.
[28] N. Kiyoshi, S. Tatsuya, K. H. Bog, Jap. J. Appl. Phys. 6 (2000) L534.
[29] M. Tadatsugu, S. Hideo, T. Shinzo, S. Hirotoshi, Jap. J. Appl. Phys., 5B
(1994) L743.
[30] S. Maniv, A. Zangvil, J. Appl. Phys. 5 (1978) 2787.
[31] M. S. Wu, W. C. Shih, W. H. Tsai, J. Phys D: Appl. Phys. 31 (1998) 943.
[32] K. Hashimoto, S. Ogawa, A. Nonoguchi, T. Omori, M. Yamaguchi, IEEE
Ultrasonics Symp. Proc. (1998) 207.
[33] K. B. Sundaram. A. Khan, Thin Solid Films 295 (1997) 87.
[34] V. Gupta, A. Mansingh, J. Appl. Phys. 2 (1996) 1063.
[35] B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press,
New York, (1971) 50.
[36] W. Kanzig, Ferroelectrics and Antiferroelectrics, Academic Press, 1957.
[37] D. W. Dye, Proc. Phys. Soc. 38 (1926) 399
[38] S. Butterworth, Phys. Soc. 27 (1915) 410
[39] K. S. V. Dyke, Proc. IRE, 16 (1928) 742
[40] IEEE Standard on Piezoelectricity, New York, 176 (1978) 42.
[41] C. K. Campbell, Surface Acoustic Eave Devices for Mobil and Wireless
Communications, Academic Press, Inc. 1998.
[42] IRE standards on piezoelectric crystals: measurements of piezoelectric
ceramics, Proceedings IRE 49 (1961) 1161.
[43] F. Herrmann, M. Weihnacht, S. Büttgenbach, IEEE Trans. Ultrasonics Freq.
Control, UFFC-48 (2001) 268.
[44] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder, H. J. Shaw, IEEE
Trans. on Microwave Theory and Techniques, 17 (1969) 856.
[45] C. M. Frans, V. D. Pol, Ceram. Bull. 69 (1990) 1959-1965.
[46] J. D. Larson, D. K. Winslow, L. T. Zitelli, IEEE Trans. Sonics. Ultrason.
19 (1972) 18.
[47] J. Ye, S. Gu, S. Zhu, T. Chen, W. Liu, F. Qin, L. Hu, R. Zhang, Y. Shi,
Y. Zheng, J. Vac. Sci. Technol. A 21 (2003) 979.
[48] V. Gupta, A. Mansingh, J. Appl. Phys. 80 (1996) 1063.
[49] T. Senda, R.C. Bradt, J. Am. Ceram. Soc. 73 (1990) 106.
[50] D. Damjanovic, T. R. Gururaja, L. E. Cross, Am. Ceram. Soc. Bull. 66
(1987) 699.
[51] W. R. Xue, J. N. Kim, S. J. Jang, L. E. Cross, R. E. Newnham, Jap. J.
Appl. Phys. 24 (1985) 718.
[52] T. Suwannasiri, A. Safari, J. Am. Ceram. Soc. 76 (1993) 3155.
[53] H. T. Chung, J. H. Cho, H. G. Kim, Jap. J. Appl. Phys. 37 (1998) 2548.
[54] W. Windsch, M. K. Gergs, D. Michel, H. Schlemmbach, A. Salzer, P. Reich,
Ferroelectrics 109 (1990) 119.
[55] K. Keizer, G. L. Lansink, A. J. Burggraaf, J. Phys. Chem. Solids. 39
(1978) 59.
[56] P. Bonasewicz, W. Hirschwald, J. Neumann, J. Electrochem. Soc. 133 (11)
(1986) 2270.
[57] T. Minami, H. Sonohara, S. Takata, H. Sato, Jap. J. Appl. Phys. 33 (1994)
L7