| 研究生: | 吳品謙 Wu, Pin-Chian | 
|---|---|
| 論文名稱: | 以電化學阻抗頻譜檢測密封型鉛酸電池的儲電狀態 Detection on SOC of VRLA Battery with EIS | 
| 指導教授: | 陳建富 Chen, Jiann-Fuh 張凌昇 Jang, Ling-Sheng | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 電機資訊學院 - 電機工程學系 Department of Electrical Engineering | 
| 論文出版年: | 2013 | 
| 畢業學年度: | 101 | 
| 語文別: | 中文 | 
| 論文頁數: | 91 | 
| 中文關鍵詞: | 電化學阻抗頻譜 、曲線回歸 、儲電狀態 、離線 、在線 | 
| 外文關鍵詞: | electrochemical impedance spectroscopy (EIS), curve fitting, state of charge (SOC), off-line, on-line | 
| 相關次數: | 點閱:104 下載:0 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
本文以電化學阻抗頻譜為基礎針對密封型鉛酸電池於不同狀態下的儲電狀態情況進行量測,狀態包括在線及離線。將量測結果與建立的等效電路模型進行曲線回歸分析,以驗證二者之正確性,並將分析後的各項等效電路參數值與誤差百分比進行比較以觀察儲電狀態與各項等效電路參數的變化關聯,部分電路參數與儲電狀態呈負相關而部分的與儲電狀態大致成正相關。除了各項等效電路參數變化以外也可看出電池狀態在不同情況下的變化。在經過一連串實驗與分析後驗證了電化學阻抗頻譜對電池儲電狀態檢測之可行性。
In this thesis, electrochemical impedance spectroscopy (EIS) is adopted to detect the state of charge (SOC) of valve regulated lead acid (VRLA) battery under off-line and on-line conditions. The measurement results and the built equivalent electrical model can verify each other with curve fitting analysis. Value and error % of all parameters of equivalent circuit can be compared after analyses so that observation on the relations between those parameters and SOC can be implemented. Some parameters are inversely proportional to SOC and the others are approximately proportional to SOC. In addition to variations of every parameter of equivalent circuit, the situation of batteries can be observed easily when batteries change under different circumstances. The feasibility of detection on the SOC of battery with EIS can be ensured after series experiments and analyses.
[1]	台灣湯淺-工業用電池,
http://www.yuasa.com.tw/_chinese/01_products/00_list_00.php?pid=3
[2]	C. Min and G. A. Rincon-Mora, “Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504-511, 2006.
[3]	A. Delaille, M. Perrin, F. Huet, and L. Hernout, “Study of the Coup De Fouet of Lead-Acid Cells as a Function of their State-of-Charge and State-of-Health,” Journal of Power Sources, vol. 158, no. 2, pp.1019-1028, 2006.
[4]	K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries,” Applied Energy, vol.86, no.9, pp. 1506–1511 ,2009.
[5]	S. Lee, J. Kim, J. Lee, and B. H. Cho, “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” Journal of Power Sources, vol. 185, no. 2, pp.1367-1373, 2008.
[6]	K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “State-of-charge estimation for lead-acid batteries based on dynamic open-circuit voltage,” IEEE Power and Energy Conference, pp. 972-976, 2008.
[7]	M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, “State-of-charge determination from EMF voltage estimation: Using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries,” IEEE Transactions on Industrial Electronics, vol. 54, no.5, pp. 2550-2557, 2007.
[8]	P. Shuo, J. Farrell, D. Jie, and M. Barth, “Battery State-of-Charge Estimation,” in Proc. IEEE ACC’01, vol. 2, pp. 1644-1649, 200
[9]	Y. H. Chiang, W. Y. Sean, and J. C. Ke, “Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles,” Journal of Power Sources, vol. 196, no. 8, pp. 3921-3932, 2011.
[10]	M. Sadri and A. Shoulaie, “A practical approach to measure battery's internal impedance,” in Proc. Power Electronic & Drive Systems & Technologies Conference (PEDSTC), pp. 418-422, 2010.
[11]	W. H. Edwards, A. I. Harrison, and T. M. Wolstenholme, “Conductance measurements in relation to battery state of charge,” Telecommunication Energy Conference, 1999. INTELEC '99. The 21st International , pp.7, 1999.
[12]	M. Charkhgard and M. Farrokhi, “State-of-charge estimation for lithium-ion batteries using neural networks and EKF,” IEEE Transactions on Industrial Electronics, vol.57, no.12, pp. 4178-4187, 2010.
[13]	S. Malkhandi, “Fuzzy logic-based learning system and estimation of state-of-charge of lead-acid battery,” Engineering Applications of Artificial Intelligence, vol. 19, no. 5, pp. 479-485, 2006.
[14]	F. Huet, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries,” Journal of Power Sources, vol. 70, no. 1, pp. 59-69, 1998.
[15]	S. Buller, M. Thele, R. W. De Doncker, and E. Karden, “Impedance-Based Simulation Models of Supercapacitors and Li-Ion Batteries for Power Electronic Applications,” IEEE Transactions on Industry Applications, vol. 41, no. 3, pp. 742-747, 2005.
[16]	A.Tenno, T. Tenno, and T. Suntio, “Battery impedance and its relationship to battery characteristics,” Telecommunications Energy Conference, 2002. INTELEC. 24th Annual International, pp.176-183, 2002
[17]	D. V. Do, C. Forgez, K. El-Kadri-Benkara, and G. Friedrich, “Impedance Observer for a Li-Ion Battery Using Kalman Filter,” IEEE Transactions on Vehicular Technology, vol. 58, no. 8, pp.3930-3937, 2009.
[18]	S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications,” Journal of Power Sources, vol. 96, no.1, pp. 113-120, 2001.
[19]	國立編譯館、張桐生,“電池組與能源系統”,財團法人徐氏基金會,中華民國78年。
[20]	李明駿,“鉛酸電池之快速充電技術研究”,國立中央大學電機工程研究所碩士論文,中華民國92年。
[21]	張永昌,“鉛酸電池殘量預測及壽命分析之研究”,國立彰化師範大學電機工程學系碩士論文,中華民國92年。
[22]	YUASA, “NP SERIES - NP 1.2-12 data sheet.”
[23]	All about the Circuit, “Kelvin (4-wire) resistance measurement,”
http://www.allaboutcircuits.com/vol_1/chpt_8/9.html
[24]	O. Stern, Z.Electrochem, 30, 508 1924.
[25]	G. Gouy, Comt.Rend. 149, 654 1909, & J.Phy,. 4, 9, 457 1910.
[26]	D. L. Chapman, Phil.Mag, 6, 25, 475 1913.
[27]	W. H. Mulder, J. H. Sluyters, T. Pajkossy, and I Nyikos, “Tafel current at fractal electrodes: Connection with admittance spectra,” Journal of Electroanalytical Chemistry, vol.285, no.1-2, pp.103-115, 1990.
[28]	G. J. Brag, A. L. G. Van Den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters, “The Analysis of Electrode Impedance Complicated by the Presence of a constant phase element,” Journal of Electroanalytical Chemistry, vol.176, no.1-2, pp. 275-295, 1984.
[29]	C. H. Kim, S. I. Pyun, and J. H. Kim, “An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations,” Electrochimica Acta, vol.48, no.1-2, pp. 3455-3463, 2003,
[30]	C. A. Schiller and W. Strunz, “The evaluation of experimental dielectric data of barrier coatings by means of different models,” Electrochimica Acta, vol.46, no. 24-25, pp. 3619-3625, 2001.
[31]	M. Doherty and J. M. Sykes, “Micro-cells beneath organic lacquers:astudy using scanning Kelvin probe and scanning acoustic mi-croscopy,” Corrosion Science, vol. 46, no. 24-25, pp.1265-1289, 2004.
[32]	S. R. Taylor and E. Gileadi, “Physical Interpretation of the Warburg Impedance”, Corrosion, vol. 51, no.9, pp.664-671, 1995.
[33]	R. A. Latham, “Algorithm development for electrochemical impedance spectroscopy diagnostics in PEM fuel cells,” MS thesis, University of Victoria, pp.26, 2004.
[34]	D. Klotz, “Characterization and Modeling of Electrochemical Energy Conversion Systems by Impedance Techniques,” Scientific Publishing.
[35]	J. Bisquert and A. Compte, “Theory of the electrochemical impedance of anomalous diffusion,” Journal of Electroanalytical Chemistry, vol.499, no.1, pp. 112-120, 2001.
[36]	NACE Resource Center, “Nernst Diffusion Layer,” http://events.nace.org/library/corrosion/Kinetics/nernstdiffusion.asp
[37]	GAMRY INSTRUMENTS, “Basics of Electrochemical Impedance Spectroscopy”, Application note.
[38]	J. E. B. Randles, “Kinetics of rapid electrode reactions,” Discussions of the Faraday Society, 1947.
[39]	E. Karden, S. Buller, and R. W. De Doncker, “A method for measurement and interpretation of impedance spectra for industrial batteries,” Journal of Power Sources, vol.85, no.1, pp.72-78, 2000.
[40]	K. Levenberg, “A Method for the Solution of Certain Non-Linear Problems in Least Squares,” Quarterly of Applied Mathematics, vol.2, no.2, pp. 164-168, 1944.
[41]	H. Karami, B. Masoomi, and R. Asadi, “Recovery of discarded sulfated lead-acid batteries by inverse charge,” Energy Conversion and Management, vol.50, no.4, pp.893-898, 2009.
 校內:2023-12-31公開
                                        校內:2023-12-31公開