簡易檢索 / 詳目顯示

研究生: 陳稟文
Chen, Ping-Wen
論文名稱: 基於定量可測試陣列及互相正交拉丁方陣之針對小延遲缺陷之測試晶片
Test Chip Design for Small Delay Defects Based on C-testable Arrays and Mutually Orthogonal Latin Squares
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 73
中文關鍵詞: 測試晶片設計可測試性設計小延遲缺陷定量可測試性互相正交拉丁方陣
外文關鍵詞: Test Chip Design, Design for Testability (DFT), Small Delay Defects (SDDs), C-testable, Mutually Orthogonal Latin Squares (MOLS)
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一種測試晶片設計,主要針對標準元件庫中組合邏輯的標準元件之小延遲缺陷進行測試及診斷。此測試晶片由定量可測試的測試陣列與掃描練所組成,並以二維形式構建以達到高可測試性及高可診斷性。本論文也提出了一種新穎的方法可將標準元件庫中的每個組合邏輯的標準元件系統性地嵌入到具有雙射性質的修改元件中,使測試陣列具定量可測試特性。為提升測試小延遲缺陷之測試解析度,我們提出了一套程序來建立測試陣列,其中包含了對修改元件進行分群與擺放的方法。分群方法會將具有相近傳送延遲時間的修改元件歸為同一群,而擺放方法則利用互相正交拉丁方陣的概念,將修改元件放置測試陣列中,使測試陣列中所有路徑的傳送延遲得以一致。實驗結果顯示,在台積電四十奈米與七奈米製程技術之下,使用雙向連接測試陣列之測試晶片的測試解析度分別可達到0.061奈秒及0.032奈秒,而使用三向連接測試陣列之測試晶片則可達到0.086奈秒及0.051奈秒,而類似的方法也可應用於更先進的製程技術中。

    In this thesis, we propose a test chip design that aims to test and diagnose the small delay faults of combinational cells in a cell library. The test chip is composed of C-testable test arrays and scan registers that are constructed in a two-dimensional format so as to achieve high testability and diagnosability. We present a novel approach to systematically map each standard cell to a modified cell with the bijection property to make the test arrays C-testable. To enhance the test resolution for the small delay defects (SDDs) testing, we propose a procedure consisting of a grouping method and a placement method. The grouping method classifies the modified cells with similar delay values into the same group. The placement method leverages the concept of mutually orthogonal Latin squares to place the modified cells in the test arrays such that the delays on the I-O paths in the test chip are balanced. Experimental results show that under TSMC 40nm and 7nm process technologies, the test resolution of the test chips using bidirectionally connected test arrays can achieve 0.061 ns and 0.032 ns, respectively, while the test chips using tridirectionally connected test arrays can achieve 0.086 ns and 0.051 ns. Similar approach can be applied to more advanced process technology.

    摘要 i Abstract ii 致謝 iii TABLE OF CONTENTS iv TABLES v TABLE OF FIGURES vi CHAPTER 1 Introduction 1 CHAPTER 2 Background 4 2.1 Small Delay Defect (SDD) 4 2.2 C-testable Property 5 2.3 Mutually Orthogonal Latin Squares (MOLS) 6 CHAPTER 3 Modified Cell Design & Test Chip Implementation 8 3.1 Modified Cell Design 8 3.2 Test Chip Implementation 11 3.2.1 Modified Cell Library Construction 12 3.2.2 Test Array Construction 12 3.2.3 Test Chip Construction 17 CHAPTER 4 Balanced Path Construction 21 4.1 Grouping Method 21 4.2 Placement with Mutually Orthogonal Latin Squares 28 CHAPTER 5 Diagnostic Analysis of Bidirectionally Connected Test Arrays 30 5.1 Under the Systematic Fault Assumption 30 5.2 Under the Random Fault Assumption 32 5.2.1 Single Fault Assumption 32 5.2.2 Double Fault Assumption 34 CHAPTER 6 Diagnostic Analysis of Tridirectionally Connected Test Arrays 40 6.1 Under the Systematic Fault Assumption 40 6.2 Under the Random Fault Assumption 42 6.2.1 Single Fault Assumption 43 6.2.2 Double Fault Assumption 45 CHAPTER 7 Experimental Results 52 CHAPTER 8 Conclusions 58 References 59

    [1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
    [2] K. Wang and S. Y. Kuo, “Fault detection and location in reconfigurable VLSI arrays,” in Proc. IEEE Int. Conf. Comput.-Aided Des. Digest of Technical Papers, 1989, pp. 234-237.
    [3] S. L. Lin, C. H. Wu, and K. J. Lee, “Repairable Cell-Based Chip Design for Simultaneous Yield Enhancement and Fault Diagnosis” in Proc. IEEE 25th Asian Test Symp., 2016, pp. 25-30.
    [4] Y. Huang and W. T. Cheng, “On Designing Two-Dimensional Scan Architecture for Test Chips” in Proc. Int. Symp. on VLSI Design, Automation and Test, 2017, pp. 1-4.
    [5] R. D. Blanton, B. Niewenhuis, and C. Taylor, “Logic Characterization Vehicle Design for Maximal Information Extraction for Yield Learning,” in Proc. IEEE Int. Test Conf., 2014, pp. 1-10.
    [6] R. D. S. Blanton, B. Niewenhuis and Z. D. Liu, “Design reflection for optimal test-chip implementation,” 2015 IEEE International Test Conference (ITC), 2015, pp. 1-10.
    [7] B. Niewenhuis, B. Ravikumar, Z. Liu and R. D. S. Blanton, “Path Delay Test of the Carnegie Mellon Logic Characterization Vehicle,” 2019 IEEE 37th VLSI Test Symposium (VTS), 2019, pp. 1-6.
    [8] A. D. Friedman, “Easily Testable Iterative Systems,” IEEE Trans. on Computers, vol. C-22, no. 12, pp. 1061-1064, Dec. 1973.
    [9] C. W. Wu and P. R. Cappello, “Easily Testable Iterative Logic Arrays,” in IEEE Trans. on Computers, vol. 39, no. 5, pp. 640-652, May 1990.
    [10] R.D. Blanton and lP. Hayes, “Properties of the Input Pattern Fault Model,” International Conference on Computer Design, pp. 372-380, 1997.
    [11] Y. H. Chen, C. M. Hsu, and K. J. Lee, “Test Chips With Scan-Based Logic Arrays,” IEEE Trans. on Comput.-Aided Des. of Integr. Circuits and Syst., vol. 40, no. 4, pp. 790-802, April 2021.
    [12] Y. -F. Chen, D. -Y. Kang and K. -J. Lee, “Scan-Based Test Chip Design with XOR-based C-testable Functional Blocks,” 2022 IEEE International Test Conference (ITC), 2022, pp. 82-91.
    [13] D. -Y. Kang, S. -N. Lin and K. -J. Lee, “Diagnosing Transition Delay Faults under Scan-Based Logic Array,” 2022 IEEE International Test Conference in Asia (ITC-Asia), Taipei, Taiwan, 2022, pp. 13-18.
    [14] M. Tehranipoor, K. Peng, and K. Chakrabarty, Test and Diagnosis for Small-Delay Defects, Springer, 2011.
    [15] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama and S. Kajihara, “Invisible delay quality - SDQM model lights up what could not be seen,” 2005 IEEE International Test Conference, 2005, pp. 9 pp.-1210.
    [16] O. A. -T. Hasib, Y. Savaria and C. Thibeault, “WeSPer: A flexible small delay defect quality metric,” 2016 IEEE 34th VLSI Test Symposium (VTS), 2016, pp. 1-6.
    [17] Koichiro Noguchi, Koichi Nose, Toshinobu Ono and Masayuki Mizuno, “A small-delay defect detection technique for dependable LSIs,” 2008 IEEE Symposium on VLSI Circuits, 2008, pp. 64-65.
    [18] C. -J. Shang, C. -H. Wu, K. -J. Lee and Y. -H. Chen, “A Novel Test Generation Method for Small-Delay Defects with User-Defined Fault Model,” 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2019, pp. 1-4.
    [19] B. Arslan, “Small delay defect diagnosis through failure observation ordering,” 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2016, pp. 1-6.
    [20] W. Zhang, K. Namba and H. Ito, “Improving small-delay fault coverage for on-chip delay measurement,” 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2012, pp. 193-198.
    [21] C. Liu, M. A. Kochte and H. -J. Wunderlich, “Aging monitor reuse for small delay fault testing,” 2017 IEEE 35th VLSI Test Symposium (VTS), 2017, pp. 1-6.
    [22] T. Yoneda, K. Hori, M. Inoue and H. Fujiwara, “Faster-than-at-speed test for increased test quality and in-field reliability,” 2011 IEEE International Test Conference, 2011, pp. 1-9.
    [23] O. A. -T. Hasib, Y. Savaria and C. Thibeault, “Optimization of Small-Delay Defects Test Quality by Clock Speed Selection and Proper Masking Based on the Weighted Slack Percentage,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 3, pp. 764-776, March 2020.
    [24] R. Brualdi, Introductory Combinatorics, Fifth Edition, Pearson Education, Inc, 2009.
    [25] F. Hapke, J. Schloeffel, H. Hashempour, and S. Eichenberger, “Gate-Exhaustive and Cell-Aware pattern sets for industrial designs,” Proceedings of 2011 International Symposium on VLSI Design, Automation and Test, 2011, pp. 1-4.

    無法下載圖示 校內:2029-11-19公開
    校外:2029-11-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE