簡易檢索 / 詳目顯示

研究生: 陳晧隆
Chen, Hao-Long
論文名稱: 氧化鎳薄膜材料特性研究
Characterization of Sputtered Nickel Oxide Thin Films
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 199
中文關鍵詞: 顯微組織結晶結構時效效應霍爾量測微波加熱光穿透率電性基板溫度厚度效應濺鍍氧化鎳薄膜
外文關鍵詞: Thickness effect, Sputtering, Nickel oxide films, Substrate temperature, Aging effect, Hall measurement, Microstructure, Structural, Electrical, Optical transmittance, Microwave heating
相關次數: 點閱:170下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要對具有NaCl-type結構的氧化鎳薄膜,在純氧氣氛中,不同射頻磁控濺鍍功率及基板溫度,將氧化鎳薄膜沈積於康寧玻璃(Corning 1737)基板上。與氧化鎳薄膜相關的性質,例如基板溫度、薄膜厚度、從優取向、表面型態、顯微組織、結晶結構、電性及光學性質都被研究。薄膜相關性質的獲得是以低掠角X光繞射儀(GIXRD)、高解析掃瞄式電子顯微鏡(HR-SEM)、高解析穿透式電子顯微鏡(HR-TEM)、原子力顯微鏡(AFM)、可見光譜儀、四點探針及霍爾效應量測。從X光繞射、掃瞄式電子顯微鏡和穿透式電子顯微鏡證實,所有的氧化鎳薄膜為多晶的結構。薄膜相關的厚度效應、基板溫度效應和時效效應等都被討論。薄膜厚度及基板溫度的影響,對顯微組織參數所產生的變化,諸如結晶尺寸(L)、疊差機率、應變和密度(D)等都被研究。所得結果顯示,薄膜晶粒尺寸隨薄膜厚度增加而增加。氧化薄膜電阻率,隨薄膜厚度及基板溫度增加而增加,主要原因為載子濃度隨薄膜厚度及基板溫度增加而減少。薄膜沈積於較低的基板溫度(< 473 K),薄膜結晶結構發展成具有(111)從優取向。當薄膜沈積於較高的基板溫度(> 473 K),則薄膜結晶結構具有(200)從優取向。在本論文中並且提出,從優取向(preferred orientation)發展的模式。氧化鎳薄膜在時效過程中,薄膜電性是非常不穩定,且薄膜電阻率隨時效時間增加而增加。氧化鎳薄膜暴露在純氧或大氣環境中,薄膜與氧或其他氣體反應、吸附可以用來被解釋,時效過程中氧化鎳薄膜電阻率增加的原因。利用微波加熱氧化鎳薄膜,確實可改善薄膜時效過程中電阻率增加的速度。

     Nickel oxide thin films with NaCl-type were deposited onto Corning glass substrates at different substrate temperatures by RF magnetron sputtering in a pure oxygen atmosphere. The relationships among substrate temperature, film thickness, and preferred orientation, surface morphology, and microstructure, structural, optical and electrical properties of NiO films were investigated. The resulting films were analyzed by grazing-incidence X-ray diffraction (GIXRD), ultrahigh resolution scanning electron microscope (HR-SEM), high-resolution transmission electron microscope (HR-TEM), atomic force microscopy (AFM), visible spectrum, four-point probe and Hall-effect measurements. The dependences of film properties on thickness effect, substrate temperature and aging effect were studied. The X-ray diffraction (XRD), Scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses of nickel oxide films indicate that these films are polycrystalline films. The variations of the microstructural parameters, such as crystallite size (L), stacking fault probability (α), strain (ε) and density (D), with film thickness and substrate temperature were investigated. The results show the crystallite sizes increaser as the thickness of the film increases. The variation of the dislocation density and the stacking fault probabilities and strain decrease as the thickness increases. The resistivity of NiO film is increased with an increase in film thickness and substrate temperature, which is related to the decrease of carrier concentration with film thickness and substrate temperature. Films deposited at lower deposition temperature region (< 473 K) develop a (111) preferred orientation. At higher deposition temperature, the (200) preferred orientation was developed. A model of developing preferred orientation was proposed in this paper. Electrical properties of NiO films were unstable and show an aging effect. Resistivity of NiO films increases as the time of natural aging increases. Oxygen or another gas chemisorption and reaction with NiO films are used to explain in aging of the NiO films in oxygen and atmosphere. Microwave heating was used to improve aging effect of NiO films.

    中文摘要 I Abstract III 誌謝 V 目 錄 VII 圖目錄 XV 第一章 序論 1 1-1 前言 1 1-2 研究目的與動機 2 第二章 理論基礎 7 2.1 濺鍍原理 7 2.1.1 電漿理論 7 2.1.2 濺射(sputtering) 12 2.1.3 濺鍍沈積(sputtering deposition) 14 2.2 濺鍍種類 16 2.2.1 直流濺鍍 (DC sputtering) 16 2.2.2 射頻濺鍍 (RF sputtering) 17 2.2.3 反應性濺鍍 (reactive sputtering) 19 2.2.4 磁控濺鍍 (magnetron sputtering) 19 2.3 薄膜沈積原理 21 2.3.1 薄膜沈積現象 21 2.3.2 薄膜成長機構 24 2.4 薄膜結構型態 27 2.5 微波加熱原理及特色 31 2.5.1「微波」定義 31 2.5.2 微波加热原理 32 2.5.3 微波加熱的特點 32 2.6 氧化鎳基本性質 34 2.7 氧化鎳缺陷方程式 35 第三章 實驗方法與步驟 38 3.1 實驗流程圖 38 3.2 實驗設備 39 3.2.1 射頻磁控濺鍍系統 39 3.3 材料準備 39 3.3.1 濺鍍靶材(Target) 39 3.3.2 基材(Substrate) 41 3.3.3 氣體 41 3.4 實驗方法 41 3.4.1 實驗步驟 41 3.4.2 基材準備 42 3.4.3 薄膜沈積 46 3.5 薄膜的分析與測試 47 3.5.1 薄膜厚度量測及沈積速率 47 3.5.2 結晶結構分析 47 3.5.3 霍爾效應量測(Hall effect measurement) 52 3.5.4 片電阻(sheet resistance)量測 54 3.5.5 光學性質 55 3.5.6 鍍膜表面型態 59 3.5.7 微結構觀察 60 3.5.8 TEM 環狀繞射圖形分析 60 3.5.9 成分化學鍵結分析 61 3.5.10 縱深元素分析 62 3.5.11 時效電阻量測 62 3.5.11 微波熱處理 63 第四章結果與討論 65 4.1濺鍍特性和薄膜基本性質 65 4.1.1薄膜沈積速率 (Deposition Rate) 65 4.1.2薄膜結晶結構 (Crystal Structure) 69 4.1.3薄膜表面型態 (Surface Morphology) 69 4.1.4霍爾效應量測 (Hall Effect Measurement) 70 4.2薄膜厚度的影響(Thickness effects) 77 4.2.1 結構性質(Structural properties) 77 4.2.2 電性(Electrical properties) 85 4.2.3 光學性質(Optical properties) 86 4.3基板溫度的影響 97 4.3.1結構性質(Structural properties) 97 4.3.2 化學組成分析(Chemical composition) 100 4.3.3 電性(Electrical properties) 100 4.3.4 光學性質(Optical properties) 101 4.4顯微組織及表面型態觀察 113 4.4.1 顯微組織觀察 113 4.4.2 表面型態觀察 114 4.5 氧化鎳薄膜結構特性 125 4.5.1 從優取向(Preferred orientation) 125 4.5.2 結晶結構(Crystal structure) 132 4.6 氧化鎳薄膜導電特性 143 4.7氧化鎳薄膜時效特性 149 4.7.1 時效結果 149 4.7. 2 時效機構 154 4.7. 3 時效改良 158 第五章結論 178 參考文獻 181 自述 196 著作 197

    [1] E. Fujii, A. Tomozawa, H. Torii, R. Takayama, “Preferred orientations of NiO films prepared by plasma-enhanced metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 35 (1996) L328-L330.
    [2] K. Yoshimura, T. Miki, S. Tanemura, “Nickel oxide electrochromic thin films prepared by reactive dc magnetron sputtering,” Jpn. J. Appl. Phys. 34 (1995) 2440-2446.
    [3] M. Bögner, A. Fuchs, K. Scharnagl, R. Winter, T. Doll, I. Eisele, “Thin (NiO)1−x(Al2O3)x, Al doped and Al coated NiO layers for gas detection with HSGFET,” Sens. & Actuat. B 47 (1998) 145-152.
    [4] I-M. Chan, F. C. Hong, “Improve performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode,” Thin Solid Films 450 (2004) 304-311.
    [5] H. Ohta and H. Hosono, “Transparent oxide optoelectronics,” Materials Today, v 7, n 6, June, 2004, p 42-51.
    [6] Y. Shimizu, T. Yamashita and S. Takase, “Electrirochromic phosphate-ion sensor based on nickel-oxide thin film electrode,” Jpn. J. Appl. Phys. 39 (2000) L384-L386.
    [7] H. Sato, T. Minami, S. Takata, T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films 23 (1993) 27-31.
    [8] J. Yang, D. Q. Shi, C. Park, K. J. Song, R. K. Ko, H. Z. Liu, H. W. Gu, “Fabrication of cube textured NiO seed layer for YBCO coated conductor,” Physica C 412-414 (2004) 844-847.
    [9] T. Maeda, S. B. Kim, T. Suga, H. Kurosaki, Y. Toyotaka, Y. Yamada, T. Watanabe, K. Matsumoto, I. Hirabayashi, “Characterization of Yba2Cu3O7-δ films grown on NiO buffer layer by liquid-phase epitaxy process,” Physica C 357-360 (2001) 1042-1045.
    [10] S. S. Lee, D. G. Hwang, C. M. Park, J. R. Rhee, “Effects of crystal texture on exchange anisotropy in NiO spin valves,” J. Appl. Phys. 81 (1997) 5298-5300.
    [11] P. Puspharajah, S. Radhakrishna, A. K. Arof, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique,” J. Mater. Sci. 32 (1997) 3001-3006.
    [12] S. A. Mahmoud, A. A. Akl, H. Kamal, K. Abdel-Hady, “Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis,” Physica B 311 (2002) 366-375.
    [13] A. Agrawal, H. R. Habibi, R. K. Agrawal, J. P.Cronin, D. M. Roberts, R'Sue Caron-Popowich, Carl M. Lampert, “Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films,” Thin Solid Films, v 221, n 1-2, Dec 10, 1992, p 239-253.
    [14] M. Tanaka, M. Mukai, Y. Fujimori, M. Kondoh, Y. Tasaka, H. Baba, S. Usami, “Transition metal oxide films prepared by pulsed laser deposition for atomic beam detection,” Thin Solid Films 281-282 (1996) 453-456.
    [15] E. Fujii, A. Tomozawa, S. Fujii, H. Torii, M. Hattori, R. Takayama, “NaCl-type oxide films prepared by plasma-enhanced metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 32 (1993) L1448-L1450.
    [16] M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, S. Yamada, “Preparation and electrochromic properties of rf-sputtered NiOx films prepared in Ar/O2/H2 atmosphere,” Jpn. J. Appl. Phys. 33 (1994) 6656-6662.
    [17] I. Hotový, D. Búc, Š. Haščík, O. Nennewitz, “Characterization of NiO thin films deposited by reactive sputtering,” Vacuum 50 (1998) 41-44.
    [18] Y. M. Lu, W. S. Hwang, J. S. Yang, “Effect of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films,” Surface and Coatings Technology 155 (2002) 231-235.
    [19] Y. M. Lu, W. S. Hwang, J. S. Yang, H. C. Chuang, “Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering,” Thin Solid Films 420-421 (2002) 54-61.
    [20] H. Matsueda and B. L. Averbach, “Sputtered films of nickel and nickel oxide,” Materials Science and Engineering 23 (1976) 131-134.
    [21] H. W. Ryu, G. P. Choi, W. S. Lee, J. S. Park, “Preferred orientations of NiO thin films prepared by RF magnetron sputtering”, J. Mater. Sci. Lett. 39 (2004) 4375-4377.
    [22] K. S. Ahn, Y. C. Nah, Y. E. Sung, “Thickness-dependent microstructural and electrochromic properties of sputter-deposited Ni oxide films,” J. Vac. Sci. Technol. A 20(4) (2002) 1468-1474.
    [23] J. K. Kang, S. W. Rhee, “Chemical vapor deposition of nickel oxide films from Ni(C5H5)2/O2,” Thin Solid Films 391 (2001) 57-61.
    [24] B. Chapman, Glow discharge processes: sputtering and plasma etching, New York: John Wiley & Sons, 1980.
    [25] J. E. Mahan, Physical vapor deposition of thin films, New York: John Wiley & Sons, 2000, pp.153-197.
    [26] D. M. Mattox, “Particle bombardment effects on thin-film deposition: A review,” J. Vac. Sci. Techno. A 7 (1989) 1105-1114.
    [27] B. Lewis and J. C. Anderson, Nucleation and growth of thin films, New York: Academic Press, 1978.
    [28] M. Ohring, Materials science of thin films, 2nd New York: Academic Press, 2002.
    [29] 翁睿哲,以射頻磁控濺鍍氮化鉭薄膜製程條件對顯微結構及電性影響之研究,國立成功大學 材料科學及工程學系碩士論文,中華民國九十年。
    [30] 楊哲勛,射頻磁控濺鍍氧化鎳薄膜製程條件對顯微結構與電性及光性之影響研究,國立成功大學 材料科學及工程學系碩士論文,中華民國九十年。
    [31] 莊鑫堅,P型電極氧化鎳薄膜之製備與其電性及光性之探討,國立成功大學 材料科學及工程學系碩士論文,中華民國九十二年。
    [32] 林家康,以新穎之奈米夾層技術提昇ZnO薄膜之導電度,國立成功大學 材料科學及工程學系碩士論文,中華民國九十二年。
    [33] 麻蒔立男著,陳克紹、曹永偉譯,薄膜技術,金文圖書有限公司 印行,中華民國七十五年。
    [34] D. L. Smith, Thin-film deposition: principles & practice, New York: McGraw-Hill, 1995.
    [35] B. A. Movchan and A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zir-conium dioxide,” Phys. Met. Metallogr. 28 (1969) 83-90.
    [36] 陳璟鋒,P型氧化鎳薄膜之製備與其光性、電性及材料特性之研究,國立成功大學 材料科學及工程學系碩士論文,中華民國九十三年。
    [37] D. Adler and J. Feinleib, “Electrical and optical properties of narrow-band materials,” Physical Review B 2 (1970) 3112-3134.
    [38] B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. P. Rao, V. K. Vaidyan, “Preparation of transparent and semiconducting NiO films,” Vacuum 68 (2003) 149-154.
    [39] B. D. Cullity and S. R. Stock, Elements of X-ray diffraction, 3rd ed. New Jersey: Prentice Hall, 2001.
    [40] G. K. Williamson and W. H. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metallurgica 1 (1953) 22-31.
    [41] B. H. Hwang, S. Y. Chiou, “An XRD study of highly textured HfN films,” Thin Solid Films 304 (1997) 286-293.
    [42] D. Walton, “The orientation of vapor deposits,” Phil. Mag. (1962) 1671-1679.
    [43] 姚寶順,反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究,國立成功大學 材料科學及工程學系博士論文,中華民國九十三年。
    [44] D. P. Padiyan, A. Marikani, K. R. Murali, “Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuum-deposited CdSe thin films,” Materials Chemistry and Physics 78 (2002) 51-58.
    [45] S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, “Characterization of CdTe thin film-dependence of structural and optical properties on temperature and thickness,” Solar Energy Materials & Solar Cells 82 (2004) 187-199.
    [46] U. Pal, D. Samanta, S. Ghoral, B. K. Samantaray and A. K. Chaudhuri, “Structural Characterization of cadmium selenide thin films by x-ray diffraction and electron microscopy,” J. Phys. D: Appl. Phys. 25 (1992) 1488-1494.
    [47] B. E. Warren and E. P. Warekois, “Stacking faults in cold worked alpha-brass,” Acta Metall. 3 (1955) 473-479.
    [48] J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders Jr., S. B. Warner, The science and design of engineering materials, 2nd ed. McGraw-Hill International, 1999.
    [49] L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Research Reports 13 (1958) 1-9.
    [50] L. J. van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,” Philips Technical Review 20 (1958) 220-224.
    [51] M. Razeghi, Fundamentals of solid state engineering, Boston: Kluwer Academic Publishers, 2002.
    [52] T. Mahalingam, V. S. John, G. Ravi, P. J. Sebastian, “Microstructural characterization of electrosynthesized ZnTe thin films,” Cryst. Res. Technol. 37 (2002) 329-339.
    [53] D. N. Lee, “A model for development of orientation of vapour deposits,” Journal of Materials Science 24 (1989) 4375-7378.
    [54] S. Y. Wang, W. Wang, W. Z. Wang, Y. W. Du, “Preparation and characterization of highly orientated NiO(200) films by a pulse ultrasonic spray pyrolysis method,” Materials Science and Engineering B 90 (2002) 133-137.
    [55] P. Arun, P. Tyagi, A. G. Vedeshwar, V. K. Paliwal, “Aging effect of Sb2Te3 thin films,” Physica B 307 (2001) 105-110.
    [56] P. J. Sebastian, V. Sivaramakrishnan, “Investigation of oxygen chemisorption on the surface of CdSe0.8Te0.2 thin films by X-ray photoelectron spectroscopy and transmission electron microscopy,” Thin Solid Films 189 (1990) 183-191.
    [57] J. Calderer, “Effects of the atmosphere on the resistance of ITO thin films,” Vacuum 37 (1987) 441-442.
    [58] I. G. Austin, N. F. Mott, “Polarons in crystalline and non-crystalline materials,” Advance in Physics 50 (2001) 757-812.
    [59] 陳俊元,磁控濺鍍氧化亞銅奈米薄膜之光電特性研究,崑山科技大學 電子工程學系碩士論文,中華民國九十三年
    [60] P. J. Sebastian, V. Sivaramakrishnan, “Studies on aging and electrical condition CdSe(0.2)Te(0.8) thin films, J. Phys. Chem. Solid. 51 (1990) 401-405.
    [61] 陳力俊 等著,材料電子顯微鏡學,國科會精儀中心發行,民全總經銷,中華民國八十三年。
    [62] F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly ehanced luminescence of Dy3+-Doped ZnO nanocrystals by Li+ doping via combustion Method,” Langmuir 20 (2004) 3528-3531.
    [63] P. Kosfstad, Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides, NewYork: John Wiley & Sons, 1972.
    [64] R.J.D. Tilley, DEffect crystal chemistry and its applicatons, NewYork: Chapman and Hall, 1987.
    [65] E. H. Rhoderick, “The Hall effect – an important diagnostic tool,” III-Vs Review 13 (2000) 46-51.
    [66] I. Hotový, J. Huran, J. Janỉk and A. P. Kobzev, “Deposition and properties of nickel oxide films produced by DC reactive magnetron sputtering,” Vacuum 51 (1998) 157-160.
    [67] H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, “Preparation and characteristics of nickel oxide thin film by controlled growth with sequential surface chemical reactions,” Journal of Materials Science Letters 15 (1996) 1081-1083.
    [68] X. Y. Song, Y. X. He, C. M. Lampert, X. F. Hu, X. F. Chen, “Cross-sectional high-resolution transmission electron microscopy of the microstructure of electrochromic nickel oxide,” Solar Energy Materials & Solar Cells 63 (2000) 227-235.
    [69] I. Hotový, J. Liday, L. Spiess, H. Sitter and P. Vogrinic, “Study of annealed NiO thin films sputtered on unheated substrate,” Jpn. J. Appl. Phys. 42 (2003) L1178-L1181.
    [70] X. Zhang, G. Chen, “The microstructure and electrochromic properties of nickel oxide films deposited with different substrate temperatures,” Thin Solid Films 298 (1997) 53-56.
    [71] F. F. Ferrira, M.H. Tabacniks, M.C.A. Fantini, I.C. Faria, A. Gorenstein, “Electrochromic nickel oxide thin films deposited under different sputtering conditions,” Solid State Ionics 86-88 (1996) 971-976.
    [72] J. Kleiza, V. Kleiza, “The method for calculation the Hall effect parameters,” Nolinear Analysis: Modelling and Control 9 (2004) 129-138.
    [73] J. L. Yang, Y. S. Lai, J. S. Chen, “Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering,” Thin Solid Films (2005) in pressing.
    [74] F. Czerwinski, J. A. Szpunar, “Texture development in thin nickel oxide films,” Materials Research Society Symposium Proceeding 343 (1994) 131-136.
    [75] P. M. Oliver, S.C. Parker and W. C. Mackrodt, “Computer simulation of the crystal morphology of NiO,” Modeling Simul. Sci. Eng. 1 (1993) 755-760.
    [76] C. A. Ventrice Jr., Th. Betrams, H. Hannemann, A. Brodde, and H. Neddermeyer, “Stable reconstruction of the polar (111) surface of NiO on Au(111),” Physical Review B 49 (1994) 5773-5776.
    [77] P. W. Tasker, “The stability of ionic crystal surfaces,” J. Phys. C: solid State Phys. 12 (1979) 4977-4984.
    [78] A. Barbier, C. Mocuta, H. Kuhlenbeck, K. F. Peters, B. Richter, and G. Renaud, “Atomic structure of the polar NiO(111)-p(2x2) surface,” Physical Review Letters 84 (2000) 2897-2900.
    [79] C. A. J. Fisher, “Molecular dynamics simulations of reconstructed NiO surfaces,” Scripta Materialia 50 (2004) 1045-1049.
    [80] D. Wolf, “Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem,” Physical Review Letters 68 (1992) 3315-3318.
    [81] D.E. Parry, “The electrostatic potential in the surface region of an ionic crystal,” Surface Science 49 (1975)433-440.
    [82] V. Fuenzalida and I. Eisele, “Growth statics of adsorbates on a one-dimensional surface,” Journal of Crystal Growth 80 (1987) 434-440.
    [83] Y. M. Lu and M. H. Hon, “Stacking fault probability in -SiC grown by chemical vapor deposition,” Materials Science and Engineering, B8 (1911) 241-244.
    [84] Z. M. Jarzebski, Oxide semiconductors, Wydawnictwa: Naukowo-Techniczne, 1973.
    [85] J. B. Wagner Jr., “Electrical conductivity, diffusion, and minority defects in some transition-metal oxides,” in M. S. Seltzer and R. I. Jaffee ed., Deffects and transport in oxides, New York: Plenum press, 1974, pp.283-301.
    [86] R. H. Condit, “Growth of pure crystals of NiO and measurement of their drift mobility,” in M. S. Seltzer and R. I. Jaffee ed., Deffects and Transport in Oxides, New York: Plenum press, 1974, pp.333-339.
    [87] Y. W. Shin, Electrical conductivity and diffusivity of NiO, Ph.D. thesis, Arizona State University, 1996.
    [88] F. J. Morin, “Electrical properties of NiO”, Physical Review 93 (1954) 1199-1204.
    [89] J. L. McNatt, “Electroreflectance study of NiO,” Physical Review Letters 23 (1969) 915-918.
    [90] O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, “Ni-defective value and resistivity of sputtered NiO films,” Journal of Magnetism and Magnetic Materials 226-230 (2001) 1627-1628.
    [91] O. Kohmoto, H. Nakagawa, Y. Isagawa, A. Chayahara, “Effect of heat treatment on the oxygen content and resistivity in sputtered NiO films,” Journal of Magnetism and Magnetic Materials 226-230 (2001) 1629-1630.
    [92] I. Hotový, J. Huran, L. Spiess, J. Liday, H. Sitter, Š. Hašcik, “The influence of process parameters and annealing temperature on the physical properties of sputtered NiO thin films,” Vacuum 69 (2003) 237-242.
    [93] N. Fuschillo, B. Lalevic, and B. Leung, “Electrical conduction and dielectric breakdown in crystalline NiO and NiO(Li) films,” Journal of Applied Physics 46 (1975) 310-316.
    [94] M. O’Keeffe, “On the arrangements of ions in crystals,” Acta Cryst. A33 (1977) 924-927.
    [95] N. F. Mott and M. J. Littleton, “Conduction in polar crystals. I. electrolytic conduction in solid salts,” J. Chem. Soc., Faraday Trans. 2, 85 (1989) 565-579.
    [96] C. R. A. Catlow, W. C. Mackrodt, M. J. Norget and A. M. Dtoneham, “The basic atomic process of corrosion I. Electronic conduction in MnO, CoO and NiO,” Philosophical Magazine 35 (1977) 177-187.
    [97] M. A. Kolber and R. K. MacCrone, “Bound-Polaron hopping in NiO,” Physical Review Letters 29 (1972) 1457-1461.
    [98] D. P. Snowden and H. Saltsburg, “Hopping conduction in NiO,” Physical Review Letters 14 (1965) 497-499.
    [99] J. Feinleib and D. Adler, “Band structure and electrical conductivity of NiO,” Physical Review Letters 21 (1968) 1010-1013.
    [100] A. J. Bosman and C. Crevecoeur, “Mechanism of the Electrical conduction in Li-Doped NiO,” Physical Review 144 (1966) 763-770.
    [101] A. Wander, I. J. Bush, and N. M. Harrison, “Stability of rocksalt polar surface: An ab into study of MgO(111) and NiO(111),” Physical Review B 68 (2003) 2334051-2334054.
    [102] A. Freitage, V. Staemmler, “Electronic surface states of NiO,” Chemical Physical Letters 210 (1993) 10-14.
    [103] C.G. Kinniburgh, “LEED calculations for the NiO(100) surface,” Surface Science 63 (1977) 274-282.
    [104] I. Hotovy, J. Huran, L. Spiess, “Characterization of sputtered NiO films using XRD and AFM,” Journal of Materials Science 39 (2004) 2609-2612.
    [105] A. Barbier, G. Renaud, C. Mocuta, A. Stierle, “Structural investigation of the dynamics of the NiO(111) surface by GIXS,” Surface Science 433-435 (1999) 761-764.
    [106] I. Hotový, J. Huran, L. Spiess, Š. Haščík, V. Rehacek, “Preparation of nickel oxide thin films for gas sensors applications,” Sensors and Actuators B 57 (1999) 147-152.
    [107] M. Schönnenbeck, D. Cappus, J. Klinkmann, H,-J. Freund, L.G.M. Petterson, “Adsorption of CO and NO on NiO and CoO: a comparison,” Surface Science 347 (1996) 337-345.
    [108] M. Schulze, R. Reissner, M. Lorenze, U. Radke, W. Schnurnberger, “Photoelectron study of electrochemically oxidized nickel and water adsorption on defined NiO surface layers,” Electrochimica Acta 44 (1999) 3969-3976.
    [109] M. Bäumer, D. Cappus, G. Illing, H. Kuhlenbeck, and H.-J. Freund, “Influence of the defects of a thin NiO(100) film on the adsorption of NO,” J. Vac. Sci. Technol. A 10(4) (1992) 2407-2411.
    [110] I. Hotový, J. Huran, L. Spiess, R. Čapkovic, Š. Haščík, “Preparation and characterization of NiO thin films for gas sensor applications,” Vacuum 58 (2000) 300-307.
    [111] S. P. Mehandru and A. B. Anderson, “Adsorption of O2, SO2, and SO3, on nickel oxide,” J. Electrochem. Soc.: Solid-State Science and Technology 133 (1986) 828-832.
    [112] F. Rohr, K. Wirth, J. Libuda, D. Cappus, M. Bäumer, H.-J. Freund, “Hydroxyl driven reconstruction of polar NiO(111) surface,” Surface Science 315 (1994) L977-L982.
    [113] N. Kitakatsu, V. Maurice, C. Hinnen, P. Marcus, “Surface hydroxylation and local structure of NiO thin films formed Ni(111),” Surface Science 407 (1998) 36-58.
    [114] R. Reissner, U. Radke, M. Schulze, E. Umbach, “Water coadsorbed with oxygen and potassium on thin NiO(100) films,” Surface Science 402-404 (1998) 71-75.
    [115] M. A. Langell and R. P. Furstenau, “Gas adsorption properties of stoichiometric and reduced NiO(100),” Applied Surface Science 26 (1986) 445-460.
    [116] S. P. Mitoff, “Electrical Conductivity and thermodynamic equilibrium in nickel oxide,” The Journal of Chemical Physics 35 (1961) 882-889.
    [117] Z. M. Jarzebski, Oxide semiconductors, New York: Pergamon press, 1973.
    [118] R. R. Heikes, “Relation of magnetic structure to electrical conductivity in NiO and related compounds,” Physical Review 99 (1955) 1232-1234.
    [119] H. J. Van Dall and A. J. Bosman, “Hall effect in CoO, NiO, and -Fe2O3,” Physical Review 158 (1967) 736-747.
    [120] S. Oswald and W. Brückner, “XPS depth profile analysis of non-stoichiometric NiO films,” Surface and Interface analysis 36 (2004) 17-22.
    [121] T. R.I. Cataldi, R. Guascito, A. M. Salvi, “XPS study and electrochemical behaviour of the nickel hexacyanoferrate film electrode upon treatment in alkaline solutions,” Journal of Electroanalytical Chemistry 417 (1996) 83-88.
    [122] J.M. Sanz, G.T. Tyuliev, “An XPS study of thin NiO films deposited on MgO(100),” Surface Science 367 (1996) 196-202.
    [123] J. F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron spectroscopy, Physcical Electronics Inc., Minesota, 1995.
    [124] R.J.D. Tilley, DEffect crystal chemistry, Blackie & Son Ltd., 1987.
    [125] L. F. Mattheiss, “Electronic structure of the 3d transition-metal monoxides. I. Energy-band results”, Physical Review B 5 (1972) 290.

    下載圖示 校內:2010-07-13公開
    校外:2010-07-13公開
    QR CODE