簡易檢索 / 詳目顯示

研究生: 張睿彬
Zhang, Rui-Bin
論文名稱: 適用於含直接傳輸項並具有飽和限制之未知系統的軌跡追蹤器:基於一種適應性權重調整機制
Tracker-Design for the Unknown System with an Input-Output Feed-Through Term and Constraints: An Adaptive Mechanism for Tuning Weighting Matrices
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 61
中文關鍵詞: 輸入飽和限制狀態飽和限制輸出飽和限制軌跡追蹤器觀測器/卡爾曼濾波 器鑑別方法OKID 型權重調整機制
外文關鍵詞: optimal input/state/output-constraint tracker, optimal observer/Kalman filter Identification, OKID-based adaptive mechanism
相關次數: 點閱:209下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個基於觀測器/卡爾曼濾波器鑑別方法並具有適應性的機制來調整具有多目標權重矩陣的代價函數,因此重新推導出一個用在具有直接傳輸項和輸入、狀態、輸出飽和限制之未知系統的新型軌跡追蹤器。首先,用觀測器/卡爾曼濾波器鑑別方法鑑別出含有直接傳輸項之未知線性或非線性系統的數學等效模型。再藉由等效的數學模型來分析和設計控制器。修改線性二次效能指標使之具有輸入、狀態、輸出飽和限制的概念,並將之離散化,因此透過離散化後的線性二次效能指標還能夠保有連續的線性二次效能指標的表現。為了精
    確的限制輸入、輸出、狀態,利用OKID 型調整機制來找出能有效限制輸入、輸出、狀態的權重值。最後,我們可以提出,適用於含直接傳輸項並具有輸入、狀態、輸出飽和限制之未知系統的軌跡追蹤器,基於觀測器/卡爾曼濾波器鑑別方法的權重調整機制。

    An observer/Kalman filter identification (OKID) method-based adaptive mechanism for tuning weighting matrices of multi-objective cost function is newly proposed in this thesis. An efficient algorithm is newly derived for the new tracker-design for the unknown system with an input-output feed-through term and input/state/output constraints. First, the unknown linear/nonlinear system containing an input-output feed-through term is identified by the observer/Kalman filter identification (OKID) method to have the equivalent mathematical model, then the controller is analyzed and designed by the equivalent mathematical model. The linear analogue quadratic performance index is modified to contain the term of input, state, and output constraints. The linear analogue quadratic performance index with input, state, and output constraints can be directly discretized into an equivalent discrete function, so that the obtained quadratic sub-optimal digital tracker can preserve the performance of the linear analogue quadratic performance index. In order
    to make the exceeding input, state and output update quickly and accurately, an OKID-based adaptive mechanism for tuning the weighting matrices is constructed. Finally, an OKID-based adaptive mechanism for tuning weighting matrices of the new tracker-design for the unknown system with an input-output feed-through term and input, state, and output constraints is proposed.Examples show the usefulness of the proposed design.

    中文摘要 ....................... I Abstract ......................II Acknowledgments............... IV List of Contents............... V List of Tables............... VII List of Figures............. VIII Chapter 1. Introduction ..................................... 1 2. Observer/Kalman Filter Identification............. 3 2.1 Basic observer equation.......................... 3 2.2 Computation of Markov parameters................. 5 2.2.1 System Markov parameters ...................... 5 2.2.2 Observer gain Markov parameters ............... 5 2.3 Eigensystem realization algorithm ............... 6 3. A New Tracker for the Equivalent Mathematical Model with a Feed-through Term ..................... 9 3.1 Continuous-time quadratic performance index with input, state, and output constraints .................. 9 3.2 A new optimal digital tracker under input, state, and output constraints for the regular model with a feed-through term ......................................... 11 3.3 An extension for the newly proposed tracker from a given linear system to the unknown nonlinear stochastic system.......18 4. OKID-based Tuning Mechanism ................. 20 4.1 Define calculating parameters............... 20 4.2 Off-line virtual OKID-based tuning systems...... 21 4.3 Tuning weighting matrix......................... 24 4.4 The procedure of performing weighting matrix..... 25 5. Illustrative Examples........................ 28 5.1 Example 5.1 ................................ 28 5.2 Example 5.2 ................................ 29 5.2.1 Without input and state constraints....... 30 5.2.2 With input and state constraints.......... 32 5.3 Example 5.3 ................................ 36 5.3.1 Without input and output constraints...... 38 5.3.2 With input and output constraints......... 40 5.4 Example 5.4 ................................ 44 5.4.1 Without input and output constraints...... 47 5.4.2 With input and output constraints......... 49 5.5 Example 5.5................................. 52 6.Conclusion.................................... 54 References...................................... 55 Appendix A Derivation of Linear Quadratic Discrete-time Performance Index with Input, Output, and State Constraints (3.15).......................................... 58

    [1]Chen, G. and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation Chaos, vol. 9, pp. 1465-1466, 1999.
    [2] Chen, L. C., New Quadratic Tracker under Input Constraint for the Unknown System with a Direct Transmission Term from Input to Output: An Alternative Digital Redesign
    Approach, Master Thesis, National Cheng Kung University, 2013.
    [3] Guo, S. M., L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transactions on Circuits and
    Systems-I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
    [4] Ho, B. L. and R. E. Kalman, “Effective construction of linear state-variable models from input-output data,” Proceedings of the 3rd Annual Allerton Conference on Circuits and System Theory, Monticello, IL: University of Illinois, pp. 449-459, 1965.
    [5] Hu, N. T., J. S. H. Tsai, S. M. Guo, L. S. Shieh, and Y. Chen, “Low-order multi-rate linear time-invariant decentralized trackers using the new observer-based sub-optimal method for unknown sampled-data nonlinear time-delay system with closed-loop decoupling,” Optimal Control Applications and Methods vol. 132(4), pp433-475, 2010.
    [6] Hu, T., A. R. Teel, and L. Zaccarian, “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol.
    44(2), pp. 512-519, 2008.
    [7] Huang, C. M., J. S. H. Tsai, R. S. Provence, and L. S. Shieh, “The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays,” Optimal Control Applications & Methods, vol. 24(4), pp. 197-236, July-August, 2003.
    [8] Huang, C. M., J. S. H. Tsai, R. S. Provence, and L. S. Shieh, “The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays,” Optimal Control Applications & Methods, vol. 24(4), pp. 197-236, July-August, 2003.
    [9] Juang, J. N., Applied System Identification, Prentice Hall, New Jersey, 1994.
    [10] Lee, L. C. J., A New Linear Quadratic Observer-Based Tracker under Input Constraint for the Unknown System with a Direct Feedthrough Term, Master Thesis, National Cheng
    Kung University, 2013.
    [11] Lin, P. H., A Modified NARMAX Model-Based Self-Tuner with Fault Tolerance for Unknown Nonlinear Stochastic Hybrid Systems with An Input-Output Direct Feed-Through Term and Input Constraint, Master Thesis, National Cheng Kung
    University, 2013.
    [12] Ogata, K., Discrete-time Control Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
    [13] Solmaz, S. K. and J. Faryar, “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54, pp. 1934-1939, 2009.
    [14] Tarbouriech, S. and M. Turner, “Anti-windup design: An overview of some recent advances and open problems,” IET Control Theory and Applications, vol. 3(1), pp. 1-19, 2009.
    [15] Tiwari, P. Y., E. F. Mulder, and M. V. Kothare, “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52(12), pp. 2341-2345, 2007.
    [16] Tsai, J. S. H., C. C. Huang, S. M. Guo, and L. S. Shieh, “Continuous to discrete model conversion for the system with a singular system matrix based on matrix sign function,” Applied Mathematical Modelling, vol. 35(8), pp. 3893-3904, 2011.
    [17] Tsai, J. S. H., C. H. Chen, M. J. Lin, S. M. Guo, and L. S. Shieh, “Novel quadratic tracker and observer for the equivalent model of the sampled-data linear singular system,” Applied Mathematical Sciences, vol. 6 (68), pp. 3381-3409, 2012.
    [18] Tsai, J. S. H., C. T. Wang, and L. S. Shieh, “Model conversion and digital redesign of singular systems,” Journal of Franklin Institute, vol. 330, pp. 1063-1086, 1993.
    [19] Tsai, J. S. H., F. M. Chen, T. Y. Yu, S. M. Guo, and L. S. Shieh, “Efficient decentralized iterative learning trackers for the unknown sampled-data interconnected large-scale state-delay system with closed-loop decoupling property,” ISA Transactions vol. 41, pp.81-94, 2012.
    [20] Tsai, J. S. H., T. H. Chien, S. M. Guo, Y. P. Chang, and L. S. Shieh, “State-space self-tuning control for stochastic chaotic fractional-order chaotic systems,” IEEE
    Transactions on Circuits and Systems Part I: Regular Papers, vol. 54(3), pp. 632-642, 2007.
    [21] Wu, F. and B. Lu, “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52(4), pp. 305-322, 2004.
    [22] Yen, G. G. and L. W. Ho, “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
    [23] Yu, X. and Y. Xia, “Detecting unstable periodic orbits in Chen’s chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 10, pp. 1987-1991, 2000.
    [24] Zaccarian, L. and A. R. Teel, “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49(11), pp. 2055-2061, 2004.

    下載圖示 校內:2019-08-11公開
    校外:2019-08-11公開
    QR CODE