| 研究生: |
林俊鏘 Malvin, |
|---|---|
| 論文名稱: |
NiO 摻雜K2CO3陽極緩衝層之製備及其應用於有機發光二極體元件 The Fabrication of K2CO3-doped NiO Anode Buffer layer and Its Applications in Organic Light-Emitting Diodes. |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 有機發光二極體 、緩衝層 、氧化鎳 、導納頻譜 |
| 外文關鍵詞: | OLED, buffer layer, NiO, Admittance Spectroscopy |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
OLED (有機發光二極體) 是新一代平面顯示器技術,與LED元件一樣,是利用兩個導體電極之間插入多層有機材料製作而成,其與液晶顯示器(LCD)不同之處在於OLED螢幕可以製作得非常薄,且具有寬視角,並可用於可撓曲式透明顯示器等特殊應用。此外,OLED還具有低驅動電壓、快速響應以及低成本的優點。鑒於此,近年來, OLED特性的鑽研改善和機制研究,使我們更加深入的瞭解這塊領域。本研究目的在於使用熱蒸鍍的技術將OLED元件中沉積金屬氧化物薄膜作為無機緩衝層,並研究NiO摻雜K2CO3緩衝層如何改進整體元件之效率。此外,本論文將會使用導納頻譜技術來評估OLED元件之相關特性,以增加研究論述之可靠度。
首先,利用各種不同濃度和厚度的摻雜金屬氧化物,用以形成超薄緩衝層熱蒸鍍於ITO基板上,並利用紫外光臭氧進行表面處理後,藉此使用不同測量方法來探討其對於元件載子注入特性的影響。其中,以X射線和紫外線光電子光譜儀來測定其表面能量化來研究其分子束縛能量,及其接面特性和功函數。再者,利用接觸角量測表面薄膜,計算其表面能和表面極性,而原子力顯示器則是測量表面粗糙程度。最後,利用導納頻譜分析量測出電容及電導。由以上的量測之相關結果,搭配元件的驅動電壓降低、亮度和電流效率增加,可以得知加入一層金屬氧化物摻雜鹼金屬在ITO與電洞傳輸層可以大幅提升元件之綜合表現。
再來,我們利用緩衝層的最佳參數製作於熱活化性廷遲螢光 (TADF) OLED。本研究的目的為,利用金屬氧化物之電洞注入層於不同屬性的發光層做更進一步的探討,並為各種情況提供最佳化的設計。由於發光層的屬性不同,其中一種為單一發光層, 另一種為主客體發光層,因此本文將探討並研究其緩衝層對不同OLED 造成的影響和機制。
接著,為了觀察元件表現和可靠性,本文將研究電荷轉移的機制,以闡明兩種不同的OLED元件,並以亮度 - 電流 - 電壓、導納頻譜之電容-電壓測試、以及二次離子質譜儀測試來進行此特性之探討。此外,測量的目的為進行快速測試,可用於預測不同元間的長期性能,並觀察離子在有機材料中遷移的現象。
OLED (Organic-Light Emitting Diode) is a semiconductor technology just like an LED (Light Emitting Diode) component, made by inserting multiple sheets of organic thin film between two conductors. Unlike liquid-crystal displays (LCDs), OLED screens can be made very thin, have wide viewing angles, and can be used on bending transparent displays. In addition, OLEDs have other advantages such as low-voltage operation, fast response, and low cost. As a result, research on the OLED’s performance improvement and operating mechanism are thoroughly discussed in recent years. In this study, we use thermal evaporation method to deposit metal oxide films as inorganic buffer layer in OLEDs devices, and investigate how the K2CO3-doped NiO buffer layers improve device performance. We also use Admittance Spectroscopy technique for the investigation of reliability evaluation for OLED display.
First, we used various concentrations and thickness of alkali metal-doped metal oxide anode buffer layers on the ITO substrates. The anode substrates were then subjected to UV-O3 surface treatment. We studied the effect and mechanism on the improved hole injection properties of OLEDs with different measurement methods. X-ray Photoelectron Spectroscopy and Ultraviolet Photoelectron Spectrometer were used to measure molecules’ binding energy and work function. Contact angle measurement was used to measure surface energy and polarity. Atomic Force Microscope was applied to measure the surface roughness. Admittance Spectroscopy was utilized to measure the capacitance and conductance, which can be used to obtain the sheet resistance. With above measurement methods, adding with improved turn on voltage, luminance and current efficiency results, we can conclude that alkali metal-doped metal oxide anode buffer layers insertion between ITO and hole transporting layer may significantly improve performance of OLED devices.
Next, we applied the optimal parameters of anode buffer layers on different emission layer properties. The objective of this work is to examine different emitting attribute OLED devices using metal oxide hole injection layer and to provide optimum design for each case. We studied different affect and mechanism on emission layers as different emission mechanism could produce various phenomenon.
Finally, the investigation of charge transfer mechanism of OLEDs is crucial to determine performance and reliability. To determine these characteristics, two different OLED devices were elucidated to test on cell level and characterized by luminance-current-voltage (L-I-V), capacitance-voltage (C-V), and Secondary-ion Mass Spectrometry (SIMS) measurement. Additionally, the purpose of these measurements was also to perform accelerated test, which can be utilized to predict devices’ long term performance, and perform observation on the migration phenomenon of ions in organic materials.
[1] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987.
[2] C. W. Tang, S. A. VanSlyke, and C. Chen, “Electroluminescence of doped organic thin films,” Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, 1989.
[3] S. A. Van Slyke, C. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Applied physics letters, vol. 69, no. 15, pp. 2160-2162, 1996.
[4] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals,” The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
[5] J. Kido, K. Nagai, and Y. Ohashi, “Electroluminescence in a terbium complex,” Chemistry Letters, vol. 19, no. 4, pp. 657-660, 1990.
[6] M. A. Baldo, D. O'brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, vol. 395, no. 6698, pp. 151, 1998.
[7] J. Kalinowski, Organic Light-Emitting Diodes: Principles, Characteristics & Processes: CRC press, 2004.
[8] Z. Li, Z. R. Li, and H. Meng, Organic light-emitting materials and devices: CRC press, 2006.
[9] K. Müllen, and U. Scherf, Organic light emitting devices: synthesis, properties and applications: John Wiley & Sons, 2006.
[10] P. Burrows, G. Gu, S. Forrest, E. Vicenzi, and T. Zhou, “Semitransparent cathodes for organic light emitting devices,” Journal of Applied Physics, vol. 87, no. 6, pp. 3080-3085, 2000.
[11] L. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
[12] M. G. Mason, L. S. Hung, C. W. Tang, S. Lee, K. W. Wong, and M. Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices,” Journal of Applied Physics, vol. 86, no. 3, pp. 1688-1692, 1999.
[13] H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Applied physics letters, vol. 74, no. 23, pp. 3444-3446, 1999.
[14] H. Yu, X. Feng, D. Grozea, Z. Lu, R. Sodhi, A. Hor, and H. Aziz, “Surface electronic structure of plasma-treated indium tin oxides,” Applied Physics Letters, vol. 78, no. 17, pp. 2595-2597, 2001.
[15] T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, and G. Yuan, “Effect of UV–ozone treatment on ITO and post-annealing on the performance of organic solar cells,” Synthetic Metals, vol. 159, no. 7-8, pp. 754-756, 2009.
[16] C. Li, C. Kwong, A. Djurišić, P. Lai, P. Chui, W. Chan, and S. Liu, “Improved performance of OLEDs with ITO surface treatments,” Thin Solid Films, vol. 477, no. 1-2, pp. 57-62, 2005.
[17] K.-X. Ma, C.-H. Ho, F. Zhu, and T.-S. Chung, “Investigation of surface energy for organic light emitting polymers and indium tin oxide,” Thin Solid Films, vol. 371, no. 1-2, pp. 140-147, 2000.
[18] A. Rudawska, and E. Jacniacka, “Analysis for determining surface free energy uncertainty by the Owen–Wendt method,” International Journal of Adhesion and Adhesives, vol. 29, no. 4, pp. 451-457, 2009.
[19] C. Wu, C. Wu, J. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Applied Physics Letters, vol. 70, no. 11, pp. 1348-1350, 1997.
[20] Z. Z. You, “Combined AFM, XPS, and contact angle studies on treated indium–tin-oxide films for organic light-emitting devices,” Materials letters, vol. 61, no. 18, pp. 3809-3814, 2007.
[21] A. Schlatmann, D. W. Floet, A. Hilberer, F. Garten, P. Smulders, T. Klapwijk, and G. Hadziioannou, “Indium contamination from the indium–tin–oxide electrode in polymer light‐emitting diodes,” Applied physics letters, vol. 69, no. 12, pp. 1764-1766, 1996.
[22] S. Y. Kim, J.-L. Lee, K.-B. Kim, and Y.-H. Tak, “Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes,” Journal of Applied physics, vol. 95, no. 5, pp. 2560-2563, 2004.
[23] H.-T. Lu, and M. Yokoyama, “Enhanced emission in organic light-emitting diodes using Ta2O5 buffer layers,” Solid-State Electronics, vol. 47, no. 8, pp. 1409-1412, 2003.
[24] T. Matsushima, G.-H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” Journal of Applied Physics, vol. 104, no. 5, pp. 054501, 2008.
[25] J. Meyer, T. Winkler, S. Hamwi, S. Schmale, H. H. Johannes, T. Weimann, P. Hinze, W. Kowalsky, and T. Riedl, “Transparent inverted organic light‐emitting diodes with a tungsten oxide buffer layer,” Advanced materials, vol. 20, no. 20, pp. 3839-3843, 2008.
[26] H. Zhang, and W. C. Choy, “Indium tin oxide modified by Au and vanadium pentoxide as an efficient anode for organic light-emitting devices,” IEEE Transactions on Electron Devices, vol. 55, no. 9, pp. 2517-2520, 2008.
[27] Y.-C. Chen, P.-C. Kao, and S.-Y. Chu, “UV-ozone-treated ultra-thin NaF film as anode buffer layer on organic light emitting devices,” Optics express, vol. 18, no. 102, pp. A167-A173, 2010.
[28] Y.-C. Chen, P.-C. Kao, Y.-C. Fang, H.-H. Huang, and S.-Y. Chu, “How the surface energy of ultra-thin CuF2 film as anode buffer layer affect the organic light-emitting devices?,” Applied Physics Letters, vol. 98, no. 26, pp. 124, 2011.
[29] Y.-C. Chen, Y.-D. Juang, S.-Y. Chu, and P.-C. Kao, “Investigation of time-dependent UV-Ozone treatment on an ultra-thin AgF buffer layer for organic light-emitting diodes,” Journal of The Electrochemical Society, vol. 159, no. 4, pp. H388-H392, 2012.
[30] S. Y. Kim, and J.-L. Lee, “Effect of thin iridium oxide on the formation of interface dipole in organic light-emitting diodes,” Applied Physics Letters, vol. 87, no. 23, pp. 232105, 2005.
[31] C. H. Yi, C. H. Jeong, Y. H. Lee, Y. W. Ko, and G. Y. Yeom, “Oxide surface cleaning by an atmospheric pressure plasma,” Surface and Coatings Technology, vol. 177, pp. 711-715, 2004.
[32] H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, M.-R. Yang, and Z.-L. Tseng, “Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer,” Journal of Alloys and Compounds, vol. 479, no. 1-2, pp. 520-524, 2009.
[33] S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, and S. Kim, “Low‐Power Flexible Organic Light‐Emitting Diode Display Device,” Advanced Materials, vol. 23, no. 31, pp. 3511-3516, 2011.
[34] M. Dong, and L. Zhong, “Chameleon: a color-adaptive web browser for mobile OLED displays,” IEEE Transactions on Mobile Computing, vol. 11, no. 5, pp. 724-738, 2012.
[35] J. A. Garrido, S. Nowy, A. Haertl, and M. Stutzmann, “The diamond/aqueous electrolyte interface: an impedance investigation,” Langmuir, vol. 24, no. 8, pp. 3897-3904, 2008.
[36] M. Meier, S. Karg, and W. Riess, “Light-emitting diodes based on poly-p-phenylene-vinylene: II. Impedance spectroscopy,” Journal of Applied Physics, vol. 82, no. 4, pp. 1961-1966, 1997.
[37] J. Scherbel, P. Nguyen, G. Paasch, W. Brütting, and M. Schwoerer, “Temperature dependent broadband impedance spectroscopy on poly-(p-phenylene-vinylene) light-emitting diodes,” Journal of Applied Physics, vol. 83, no. 10, pp. 5045-5055, 1998.
[38] A. Campbell, D. Bradley, E. Werner, and W. Brütting, “Deep level transient spectroscopy (DLTS) of a poly (p-phenylene vinylene) Schottky diode,” Synthetic metals, vol. 111, pp. 273-276, 2000.
[39] S. Van Mensfoort, and R. Coehoorn, “Determination of injection barriers in organic semiconductor devices from capacitance measurements,” Physical review letters, vol. 100, no. 8, pp. 086802, 2008.
[40] E. Ehrenfreund, C. Lungenschmied, G. Dennler, H. Neugebauer, and N. Sariciftci, “Negative capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism,” Applied physics letters, vol. 91, no. 1, pp. 012112, 2007.
[41] M. Baldo, S. Lamansky, P. Burrows, M. Thompson, and S. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Applied Physics Letters, vol. 75, no. 1, pp. 4-6, 1999.
[42] A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectronics Reliability, vol. 50, no. 9-11, pp. 1866-1870, 2010.
[43] L. Hung, L. Zheng, and M. Mason, “Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF 3,” Applied Physics Letters, vol. 78, no. 5, pp. 673-675, 2001.
[44] Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Applied physics letters, vol. 80, no. 15, pp. 2628-2630, 2002.
[45] Z. Deng, X. Ding, S. Lee, and W. Gambling, “Enhanced brightness and efficiency in organic electroluminescent devices using SiO 2 buffer layers,” Applied Physics Letters, vol. 74, no. 15, pp. 2227-2229, 1999.
[46] B. Qu, Z. Gao, H. Yang, L. Xiao, Z. Chen, and Q. Gong, “Calcium chloride electron injection/extraction layers in organic electronic devices,” Applied Physics Letters, vol. 104, no. 4, pp. 20_1, 2014.
[47] J. Zhao, Y. Cai, J.-P. Yang, H.-X. Wei, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, and J.-X. Tang, “The role of cesium carbonate on the electron injection and transport enhancement in organic layer by admittance spectroscopy,” Applied Physics Letters, vol. 101, no. 19, pp. 193303, 2012.
[48] P.-C. Kao, J.-Y. Wang, J.-H. Lin, and C.-H. Yang, “Effects of the Na2CO3 dopant on electron injection and transport in organic light emitting devices,” Thin Solid Films, vol. 527, pp. 338-343, 2013.
[49] D. A. Neamen, “Semiconductor Physics and Devices Basic Principles,” Wiley, New York, 1981.
[50] E. H. R. a. R. H. Williams, “Metal-Semiconductor Contacts,” Cleaendon, Oxford, 1988.
[51] P. Davids, I. Campbell, and D. Smith, “Device model for single carrier organic diodes,” Journal of Applied Physics, vol. 82, no. 12, pp. 6319-6325, 1997.
[52] I. Campbell, P. Davids, D. Smith, N. Barashkov, and J. Ferraris, “The Schottky energy barrier dependence of charge injection in organic light-emitting diodes,” Applied Physics Letters, vol. 72, no. 15, pp. 1863-1865, 1998.
[53] R. H. Fowler, and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. Lond. A, vol. 119, no. 781, pp. 173-181, 1928.
[54] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. Heeger, “Enhanced performance of polymer light‐emitting diodes using high‐surface area polyaniline network electrodes,” Journal of applied physics, vol. 77, no. 2, pp. 694-698, 1995.
[55] P. Davids, S. M. Kogan, I. Parker, and D. Smith, “Charge injection in organic light‐emitting diodes: Tunneling into low mobility materials,” Applied physics letters, vol. 69, no. 15, pp. 2270-2272, 1996.
[56] Q. Pei, Y. Yang, G. Yu, C. Zhang, and A. J. Heeger, “Polymer light-emitting electrochemical cells: in situ formation of a light-emitting p− n junction,” Journal of the American Chemical Society, vol. 118, no. 16, pp. 3922-3929, 1996.
[57] M. Dongge, I. Hümmelgen, B. Hu, and F. Karasz, “Charge carrier mobility in electroluminescent alternating block copolymers,” Journal of applied physics, vol. 86, no. 6, pp. 3181-3186, 1999.
[58] Y. He, and J. Kanicki, “High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates,” Applied Physics Letters, vol. 76, no. 6, pp. 661-663, 2000.
[59] D. Ma, I. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. Karasz, “Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio,” Journal of Applied Physics, vol. 87, no. 1, pp. 312-316, 2000.
[60] K.-C. Kao, and W. Hwang, Electrical transport in solids: with particular reference to organic semiconductors: Pergamon, 1981.
[61] M. A. Lampert, and P. Mark, “Current injection in solids,” 1970.
[62] P. W. Blom, and M. Vissenberg, “Charge transport in poly (p-phenylene vinylene) light-emitting diodes,” Materials Science and Engineering: R: Reports, vol. 27, no. 3-4, pp. 53-94, 2000.
[63] H. Martens, J. Huiberts, and P. Blom, “Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes,” Applied Physics Letters, vol. 77, no. 12, pp. 1852-1854, 2000.
[64] T. Van Woudenbergh, P. Blom, M. Vissenberg, and J. Huiberts, “Temperature dependence of the charge injection in poly-dialkoxy-p-phenylene vinylene,” Applied Physics Letters, vol. 79, no. 11, pp. 1697-1699, 2001.
[65] I. Campbell, D. Smith, C. Neef, and J. Ferraris, “Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics,” Applied physics letters, vol. 74, no. 19, pp. 2809-2811, 1999.
[66] J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Malliaras, S. A. Carter, and L. Bozano, “Charge transport processes in organic light-emitting devices,” Synthetic Metals, vol. 111, pp. 289-293, 2000.
[67] J. Simmons, and M. Tam, “Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions,” Physical Review B, vol. 7, no. 8, pp. 3706, 1973.
[68] G. P. Owen, J. Sworakowski, J. M. Thomas, D. F. Williams, and J. O. Williams, “Carrier traps in ultra-high purity single crystals of anthracene,” Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, vol. 70, pp. 853-861, 1974.
[69] A. Campbell, M. Weaver, D. Lidzey, and D. Bradley, “Bulk limited conduction in electroluminescent polymer devices,” Journal of applied physics, vol. 84, no. 12, pp. 6737-6746, 1998.
[70] M. Koehler, and I. Hümmelgen, “Regional approximation approach to space charge limited tunneling injection in polymeric devices,” Journal of Applied Physics, vol. 87, no. 6, pp. 3074-3079, 2000.
[71] S. Berleb, W. Brütting, and G. Paasch, “Interfacial charges and electric field distribution in organic hetero-layer light-emitting devices,” Organic Electronics, vol. 1, no. 1, pp. 41-47, 2000.
[72] W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Organic electronics, vol. 2, no. 1, pp. 1-36, 2001.
[73] Y. Noguchi, N. Sato, Y. Tanaka, Y. Nakayama, and H. Ishii, “Threshold voltage shift and formation of charge traps induced by light irradiation during the fabrication of organic light-emitting diodes,” Applied Physics Letters, vol. 92, no. 20, pp. 187, 2008.
[74] D. Gao, M. Chan, S. Tong, F. Wong, S. Lai, C. Lee, and S. Lee, “Application of an evaporable fluoro-molecule as an anode buffer layer in organic electroluminescent devices,” Chemical physics letters, vol. 399, no. 4-6, pp. 337-341, 2004.
[75] H. Im, D. Choo, T. Kim, J. Kim, J. Seo, and Y. Kim, “Highly efficient organic light-emitting diodes fabricated utilizing nickel-oxide buffer layers between the anodes and the hole transport layers,” Thin Solid Films, vol. 515, no. 12, pp. 5099-5102, 2007.
[76] H.-H. Huang, S.-Y. Chu, P.-C. Kao, and Y.-C. Chen, “Improvement of highly efficient organic light-emitting diodes using Mg-doped ZnO buffer layers,” Thin Solid Films, vol. 516, no. 16, pp. 5664-5668, 2008.
[77] H.-W. Lu, P.-C. Kao, and S.-Y. Chu, “The effects of UV-ozone treated ultra-thin Li2CO3-doped NiO film as the anode buffer layer on the electrical characteristics of organic light-emitting diodes,” Journal of Alloys and Compounds, vol. 682, pp. 311-317, 2016.
[78] N. Wang, C. Liu, C. L. B. Wen, H. Wang, S. Liu, W. Jiang, W. Ding, and W. Chai, “Structural, electrical and optical properties of K-doped NiO films prepared by rapid pyrolysis sol-gel technique,” Thin Solid Films, vol. 616, pp. 587-593, 2016.
[79] J. Kim, R. Friend, and F. Cacialli, “Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements,” Journal of Applied Physics, vol. 86, no. 5, pp. 2774-2778, 1999.
[80] X. Wang, J. Zhao, Y. Zhou, X. Wang, S. Zhang, Y. Zhan, Z. Xu, H. Ding, G. Zhong, and H. Shi, “Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode,” Journal of applied physics, vol. 95, no. 7, pp. 3828-3830, 2004.
[81] I.-W. Wu, Y.-H. Chen, P.-S. Wang, C.-G. Wang, S.-H. Hsu, and C.-I. Wu, “Correlation of energy band alignment and turn-on voltage in organic light emitting diodes,” Applied Physics Letters, vol. 96, no. 1, pp. 1, 2010.
[82] C.-C. Lin, C.-C. Chang, C.-J. Wu, Z.-L. Tseng, J.-F. Tang, S.-Y. Chu, Y.-C. Chen, and X. Qi, “In-situ post-annealing technique for improving piezoelectricity and ferroelectricity of Li-doped ZnO thin films prepared by radio frequency magnetron sputtering system,” Applied Physics Letters, vol. 102, no. 10, pp. 102107, 2013.
[83] H. Park, H. Kim, J. Lee, K. Lee, J. Yi, S. Oh, S. Sohn, D. Jung, S. Jang, and H. Chae, “Admittance spectroscopic analysis of organic light emitting diodes with the CFX plasma treatment on the surface of indium tin oxide anodes,” Thin Solid Films, vol. 516, no. 7, pp. 1370-1373, 2008.
[84] H.-W. Lu, P.-C. Kao, and S.-Y. Chu, "Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin cerium fluoride buffer layer." p. 994124.
[85] J. Xu, Y. Wang, Q. Chen, Y. Lin, H. Shan, V. Roy, and Z. Xu, “Enhanced lifetime of organic light-emitting diodes using soluble tetraalkyl-substituted copper phthalocyanines as anode buffer layers,” Journal of Materials Chemistry C, vol. 4, no. 31, pp. 7377-7382, 2016.
[86] B. W. D’Andrade, J. Esler, and J. J. Brown, “Organic light-emitting device operational stability at cryogenic temperatures,” Synthetic metals, vol. 156, no. 5-6, pp. 405-408, 2006.
[87] A. Nakamura, T. Tada, M. Mizukami, and S. Yagyu, “Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode,” Applied physics letters, vol. 84, no. 1, pp. 130-132, 2004.
[88] G. Parthasarathy, C. Shen, A. Kahn, and S. Forrest, “Lithium doping of semiconducting organic charge transport materials,” Journal of Applied Physics, vol. 89, no. 9, pp. 4986-4992, 2001.
[89] J. Blochwitz, “Organic light-emitting diodes with doped charge transport layers,” 2001.
[90] M.-S. Dong, X.-M. Wu, Y.-L. Hua, Q.-J. Qi, and S.-G. Yin, “CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Highly Efficient Simplified Organic Light-Emitting Diodes Utilizing F4-TCNQ as an Anode Buffer Layer,” Chinese Physics Letters, vol. 27, no. 12, pp. 127802, 2010.
[91] S. Hamwi, J. Meyer, T. Winkler, T. Riedl, and W. Kowalsky, “p-type doping efficiency of MoO 3 in organic hole transport materials,” Applied Physics Letters, vol. 94, no. 25, pp. 174, 2009.
[92] P. Tyagi, M. K. Dalai, C. Suman, S. Tuli, and R. Srivastava, “Study of 2, 3, 5, 6-tetrafluoro-7, 7′, 8, 8′-tetracyano quinodimethane diffusion in organic light emitting diodes using secondary ion mass spectroscopy,” RSC Advances, vol. 3, no. 46, pp. 24553-24559, 2013.
[93] M. P. Gaj, C. Fuentes-Hernandez, Y. Zhang, S. R. Marder, and B. Kippelen, “Highly efficient organic light-emitting diodes from thermally activated delayed fluorescence using a sulfone–carbazole host material,” Organic Electronics, vol. 16, pp. 109-112, 2015.
[94] Y. Yu, L. Ma, D. Wang, H. Zhou, B. Yao, and Z. Wu, “Suppression of efficiency roll-off in TADF-OLEDs using Ag-island nanostructures with localized surface plasmon resonance effect,” Organic Electronics, vol. 51, pp. 173-179, 2017.
[95] H.-W. Lu, “Investigation of the Effects of Ultra-Thin Anode Buffer Layer and Emission Layer on Organic Light-Emitting Diodes,” pp. 102-108, 2017.