簡易檢索 / 詳目顯示

研究生: 羅偉綸
Lo, Wei-Lun
論文名稱: 以比較器為基礎架構之三角調變積分器設計
Design of Comparator-Based Switched-Capacitor Sigma-Delta Modulator
指導教授: 劉濱達
Liu, Bin-Da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 62
中文關鍵詞: 三角調變積分器以比較器為基礎架構的切換電容式電路
外文關鍵詞: Sigma-delta modulator, comparator-based switched-capacitor circuit
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來廣泛應用以比較器為基礎架構的切換電容式電路,主要是將傳統電路中的運算放大器以比較器及電流源來取代,藉此達到低功率消耗與降低面積的優點。然而,因為過充電壓會影響其準確性,而且兩段式充放電限制了取樣速度,所以這篇論文提出新的充電方式,以解決過充問題及提高取樣速度,其方法是取樣過充電壓,使輸入比較器的參考電壓改變進而得到準確的輸出值。此架構只需要一段式充電,所以取樣速度可以大幅提升。
    本論文使用0.18 μm一層多晶矽六層金屬之互補式金氧半製程,實現一個供應電壓為1.8 V,取樣頻率為50 MHz之二階三角積分調變器。當此三角調變積分器的超取樣比為32時,在781.25 kHz的信號頻寬內可達到52 dB的訊號對雜訊加失真比(SNDR),整個電路的功率消耗為3.85 mW。

    A comparator-based switched-capacitor (CBSC) circuit topology is introduced comprehensively, it replaces the operational amplifier by a threshold-detection comparator and current sources, then the power consumption and active area can be decreased. However, the overshoot voltage affects the resolution and the two charge transfer phases limit the sampling frequency. This thesis propose a new method of charge transferring to solve the overshoot problem and increase the sampling speed. To obtain the precise output value, the proposed architecture adjusts the reference voltage of comparator by sampling the overshoot voltage. Moreover, there is only one current source of this structure, the sampling frequency is increased.
    This second-order ΣΔ ADC with a 1.8-V supply voltage has been designed in 0.18-μm CMOS process without low threshold MOS devices. The modulator achieves 52-dB SNDR within the signal bandwidth of 781.25 kHz, the sampling frequency is 50 MHz, which corresponds to an oversampling ratio of 32, the total power consumption is 3.85 mW.

    Abstract i Acknowledgement iii Table of Content v List of Figures xiii List of Tables xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Fundamentals of Delta-Sigma Converter 4 2.1 Introduction of ADCs 5 2.2 Sigma-Delta Modulators 7 2.2.1 Quantization error 7 2.2.2 Oversampling technique 11 2.2.3 Noise shaping technique 13 2.3 Sigma-Delta Modulators Topologies 15 2.3.1 First-order sigma-delta modulator 15 2.3.2 Second-order sigma-delta modulator 16 2.3.3 High order sigma-delta modulator 18 2.3.4 MASH (Multi-Stage Noise Shaping) sigma-delta modulator 19 2.4 Summary 21 Chapter 3 Comparator-Based Switched-Capacitor (CBSC) Circuits 22 3.1 Practical Charge Transfer Phase in CBSC Circuits 22 3.2 Proposed CBSC Circuits 25 3.2.1 CBSC gain stage 25 3.2.2 Odd phase of CBSC gain stage 27 3.2.3 Even phase of CBSC gain stage 29 3.3 Summary 30 Chapter 4 CBSC 2nd-Order SDM with Overshoot Reduction 31 4.1 Circuit Non-ideality 31 4.1.1 Thermal noise 32 4.1.2 Charge injection errors 33 4.1.3 Clock feedthrough 34 4.2 System Architecture 35 4.2.1 Input feed-forward structure 35 4.2.2 Second-order input feed-forward sigma-delta modulator 37 4.3 Circuit Architecture 39 4.3.1 Single-ended second-order sigma-delta modulator 39 4.3.2 Threshold-detection comparator 44 4.3.3 Ramp generator 47 4.3.4 1-bit quantizer 47 4.3.5 Clock generator 48 4.4 Simulation Results and Comparison 52 4.4.1 MATLAB model simulation 52 4.4.2 Pre-layout simulation results 52 4.4.3 Layout consideration 55 4.4.4 Performance comparison 57 Chapter 5 Conclusions and Future Work 58 5.1 Conclusions 58 5.2 Future Work 59 References 60

    [1]J. Crols, and M. Steyaert, “Switched-opamp: an approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, pp. 936-942, Aug. 1994.

    [2]V. Peluso, P. Vancorenland, A. Marques, M. Steyaert, and W. Sansen, “A 900-mV low-power  A/D converter with 77-dB dynamic range,” IEEE J. Solid-State Circuits, vol. 33, pp. 1887–1897, Dec. 1998.

    [3]M. Keskin, U. Moon, and G. Temes, “A 1-V 10-MHz clock-rate 13-bit CMOS  modulator using unity-gain-reset opamps,” IEEE J. Solid-State Circuits, vol. 37, pp. 817–823, July 2002.

    [4]D. Chang and U. Moon, “A 1.4-V 10-bit 25 MSPS pipelined ADC using opamp-reset switching technique,” IEEE J. Solid-State Circuits, vol. 38, pp. 1401–1404, Aug. 2003.

    [5]G. Ahn, D. Chang, M. Brown, N. Ozaki, H. Youra, K. Yamamura, K. Hamashita, K. Takasuka, U. Moon, G. Temes, “A 0.6-V 82-dB delta-sigma audio ADC using switched-RC integrators,” IEEE J. Solid-State Circuits, vol. 40, pp. 2398-2407, Dec. 2005.

    [6]M. Kim, G. Ahn, P. Hanumolu, S. Lee, S. Kim, S. You, J. Kim, G. Temes, and U. Moon, “A 0.9-V 92-dB double-sampled switched-RC ΔΣ audio ADC,” in Proc. IEEE Symp. VLSI Circuits, June 2006, pp. 200-201.

    [7]G. Ahn, M. Kim, P. Hanumolu, and U. Moon, “A 1-V 10b 30MSPS switched-RC pipelined ADC,” in Proc. IEEE Custom Int. Circuits Conf., pp. 325-328, Sep. 2007.

    [8]S. Chatterjee, Y. Tsividis and P. Kinget, “0.5-V analog circuit techniques and their application in OTA and filter design,” IEEE J. Solid-State Circuits, vol. 40, pp. 2373-2387, Dec. 2005.

    [9]S. Chatterjee, Y. Tsividis and P. Kinget, “Ultra-low voltage analog integrated circuits,” IEICE Trans. Electron., Vol. E89-C, pp. 673-680, Jun. 2006.

    [10]Y. Chae and G. Han, “A low power sigma-delta modulator using class-C inverter,” in Proc. IEEE Symp. VLSI Circuits, June 2007, pp. 240-241.

    [11]Y. Chae, I. Lee and G. Han, “A 0.7-V 36-W 85-dB-DR audio  modulator using class-C inverter,” in Proc. ISSCC Dig. Tech. Papers, Feb. 2006, pp.490-491.

    [12]Y. Chae and G. Han, “Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator,” IEEE J. Solid-State Circuits, vol. 44, pp. 458-472, Feb. 2005.

    [13]J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H.-S. Lee, “Comparator based switched capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-State Circuits, vol. 41, pp. 2658–2668, Dec. 2006.

    [14]T. H. Chang, L. R. Dung, J. Y. Guo, and K. J. Yang, “A 2.5-V 14-bit, 180-mW cascaded sigma-delta ADC for ADSL2+ application,” IEEE J. Solid-State Circuits, vol. 42, pp. 2357-2368, Nov. 2007.

    [15]J. Paramesh, R. Bishop, K. soumyanath, and D. Allstot, “An 11-bit 330-MHz 8X OSR sigma-delta modulator for next-generation WLAN,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2007, pp. 166-167.

    [16]D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.

    [17]B. Razavi, Design of Analog CMOS Integrated Circuits, Boston. MA: McGraw-Hill, 2001.

    [18]J. Silva, U. Moon, and G. C. Temes, “Low-distortion delta-sigma topologies for MASH architectures,” in Proc. Int. Symp. Circuits and Syst., May 2004, pp. 23-26.

    [19]W. Sansen, “Distortion in elementary transistor circuits,” IEEE Trans. Circuits Syst. II, Analog and Digital Signal Processing, vol. 46, pp. 315-325, Dec. 1999.

    [20]T. Musah, S. Kwon, H. Lakdawala, K. Soumyanath, and U. Moon, “A 630μW zero-crossing-based ΔΣ ADC using switched-resistor current source in 45nm CMOS,” in Proc. IEEE CICC, Sep. 2009, pp. 1-4.

    [21]E. Ibaragi, A. Hyogo, and K. Sekine, “A method to improve CMRR for CMOS operational amplifier by using feedforward technique,” IEICE Trans. Fundam., vol. E80-A, pp. 356-358, Feb. 1997.

    [22]K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, and G. C. Temes, “A noise-coupled time-interlaeved delta-sigma ADC with 4.2 MHz bandwidth, -98 dB THD, and 79 dB SNDR,” IEEE J. Solid-State Circuit, vol. 43, pp. 2601-2612, Dec. 2008.

    [23]D. Prelog, M. Momeni, B. Horvat, and M. Glesner, “Cascade delta-sigma modulator with pseudo-differential comparator-based switched-capacitor gain stage,” Analog Integr. Circuits Process., vol. 7, pp. 201-206, July 2006.

    [24]M. C. Huang, S. I. Liu, “A fully differential comparator-based switched-capacitor ΔΣ modulator,” IEEE Trans. Circuits Syst. II, vol. 56, pp. 369-373, May 2009.

    [25]R. D. Rio, F. Medeiro, B. P. Verdu, J. D. Rosa, and A. R. Vazquez, CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom: Error Analysis and Practical Design. Dordrecht: Springer, 2006.

    無法下載圖示 校內:2012-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE