簡易檢索 / 詳目顯示

研究生: 劉士生
Liu, Shi-Sheng
論文名稱: (Mg0.95Zn0.05)TiO3 介電陶瓷之微波特性及其應用
Microwave Dielectric Properties and Applications Of (Mg0.95Zn0.05)TiO3 Ceramics
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 89
中文關鍵詞: 濾波器介電特性X射線繞射陶瓷
外文關鍵詞: Filters, Dielectric properties, X-ray diffraction, Ceramics
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中探討(Mg0.95Zn0.05)TiO3陶瓷系統的微波介電特性及材料的微結構。而微波介電特性與燒結溫度有密切關係,在燒結溫度1300oC持溫4小時其介電特性:介電常數為17.05,Qxf值264000GHZ(在11GHZ)及f值為-40.31ppm/oC。

      藉由適當混合CaTiO3陶瓷一起燒結,可以使系統的共振頻率溫度係數f值移至趨近於零的結果,再以CuO添加可使燒結溫度降低至1175oC〜1250oC,在燒結溫度1225oC持溫4小時, 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3+0.5wt% CuO的介電特性為:介電常數21.48,Qxf值125600GHZ(在9.6GHZ)及f值為-5.95ppm/oC。

      在元件的製作上,使用三種不同的基板:FR4,Al2O3及0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3+0.5wt% CuO 之自製基板設計一個寬頻微帶線帶通環形濾波器,其中心頻率為5.4GHZ,利用軟體的模擬並與實作的結果作特性上的比較

      The microwave dielectric properties and the microstructures Of the series of (Mg0.95Zn0.05)TiO3 ceramics system were investigated. The microwave dielectrics properties are strongly correlated with the sintering temperature. At 1300oC for 4h,the (Mg0.95Zn0.05)TiO3 ceramics can give εr〜17.05,Qxf value〜264000GHZ(at11GHZ) and a f value of〜-40.31ppm/oC.

      By appropriately adjusting the CaTiO3 in the series of (Mg0.95Zn0.05)TiO3 ceramics system, approach zero f value can be achieved .The CuO additives lowered the sintering temperature Of 0.95(Mg0.95Zn0.05) TiO3-0.05CaTiO3 ceramics to the range 1175oC〜1250oC.A dielectric constant ofεr〜21.48,a Qxf value of 125600GHZ(at 9.6GHZ) and a f value of〜-5.95 ppm/oC was obtained for 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3+0.5wt% CuO ceramics sintered at 1225oC for 4h.

      On another hand, we use three ceramic dielectric materials: FR4, Al2O3 and 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3+0.5wt% CuO. to fabricate the substrate. In this thesis, the characteristics of a wide-band microstrip bandpass filter with the designed center frequency of 5.4 GHZ where reported. The filter used in this work was composed of the ring resonator. And we compared the result of the simulation with the result of the measurement of the performance.

    考試合格證明 中文摘要 英文摘要 誌謝 第一章 緒論………………………………………………………………………1 第二章 微波介電材料原理……………………………………………………3 2-1介電原理………………………………………………………..………….. 3 2-2介電共振器原理……………………………………………………………10 2-3燒結理論……………………………………………………………………12 第三章 微波濾波電路原理………………………………………..………….15 3-1微波濾波器的簡介…………………………………………………………15 3-2微帶線原理…………………………………………………………………16 3-2-1微傳輸線介紹………………………………………………………….16 3-2-2微帶線傳輸組態……………………………………………………….17 3-2-3微帶線各項參數公式計算及考量…………………………………….17 3-3實作線路尺寸計算方式…………………………………………………….24 第四章 製程與量測方法……………………………………………...………..27 4-1微波介電材料的製備………………………………………………………..27 4-2微波介電材料的特性分析與量測…………………………………………..29 4-2-1 X-Ray分析……………………………………………………………...29 4-2-2掃瞄式電子顯微鏡(SEM)分析………………………………….…..29 4-2-3密度之量測………………………………………………………….…..30 4-2-4微波特性的量測………………………………………………………...30 4-3濾波器的製作與量測……………………………………………………..…36 4-3-1濾波器的實作………………………………………………………..….37 4-3-2濾波器的量測…………………………………………………………...37 第五章 實驗結果與討論…………………………………..………………..….38 5-1介電共振器材料分析…………………………………………………..…....38 5-1-1(Mg0.95Zn0.05)TiO3之材料…………………………………………....38 5-1-2(1-x)(Mg0.95Zn0.05)TiO3-xCaTiO3系統……………………………..39 5-1-3添加CuO對0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3系統的影響…….41 5-2濾波器特性討論………………………………………………………….….43 第六章 結論……………………………………………………………………….45 參考文獻……………………………………………………………………………..47

    1. A. Okaya:Proc. IRE, Vol. 48, P.1921, 1960.

    2. H.M. O’Brryan, JR. and J. Thomson, JR.:J. Am. Ceram. Soc. Vol.57, P.450, 1974.

    3. G. Wolfram and H.E.Gobel:Mat. Res. Bull. Vol.16, P.1455, 1981.

    4. S. Nishgaki, H.Kato, S. Yano and R. Kamamura:Am. Ceram. Soc. Bull, Vol.66, P.1405, 1987.

    5. H. Ouchi and S. Kawashima:Pro. Of the 6th meeting on Ferroelectricity, Kobe, Jpn. J. Appl. Phys., Vol.24, P.60, 1985.

    6. R.D. Richtmyer, “dielectric Resonator” J. Appl. Phys., Vol. 10, PP.391-398, 1939.

    7. S. B. Chon, “Microwave Bandpass Filters Contain High Q Dielectric Resonator”, IEEE. Trans. On MTT, PP.218-227, 1968.

    8. 吳朗,電子陶瓷-介電,全欣科技圖書,PP.268-275,1994.

    9. D.K. Cheng, “Field and Wave Electromagnetics, 2/e”, Addison-wesley, 1989.

    10. V.N. Eremenko, T.V. Naidich and I.Aienko, “Liquid Sintering”, (Consolation New York, 1970, ch4).

    11. K.S. Hwang, PhD Thesis, Rensselaer Ploytechnic in Troy (1984)

    12. J.W. Canh and R.B.Heady, J.A.ceram. P.406, 1970.

    13. W.J. Huppmann and G..Petzow:Sintering Process, Edited by G..C. Kuczynski (Plenum Press, New York, PP.189,
    1980).

    14. W.J. Huppmann and G..Petzow, Ber. Bunnsenges Phys. Chem. 82, PP.308 (1978).

    15. R.M. German:Liquid phase Sintering, (Plenum Press, New York 1985, ch4).

    16. J.H. Jean and C.H. Lin:J. Mater. Sci.24, P500, 1989.

    17. K.C.Gupta, R.Garg, I. Bahl, and E.Bhartis, “Microstrip Lines and Slotlines”, Second Edition, Artech House, Boston, 1996.

    18. E.O. Hammerstard, “Proceedings of the European Microwave Conference”, P.268-272, 1975.

    19. David M.Pozar “Microwave Engineering”, Addison-Wesley, 1998.

    20. E.J. Denlinger “Losses of microstrip lines” IEEE Trans., MTT-28, June, P.513-522, 1980.

    21. R.A. Pucel, D.J. Masse, and C.E. Hartwig “Losses in microstrip” IEEE Trans., MIT-16, June, P.342-350, 1968, Correction in IEEE. Trans., MTT-16, Dec. 1968, P1064.

    22. 張盛富,戴明鳳,”無線通信之射頻被動電路設計”,全華出版社,1998.

    23. T. Edwards, “Foundations for Microstrip Circuit Design, Second Edition”, Wiley, Chichester, U.K., 1991.

    24. M. Kirschning, R.H. Jansen, and N.H.L.Koster, “Accurate model for open and effect of microstrip lines” Electronics Letters, Vol.17, P.123-125, 1981.

    25. B.Easter, “The equivalent circuit of some microstrip discontinuities” IEEE Trans., MTT-23, P.655-660, 1975.

    26. Lung-Hwa Hsieh, and Kai Chang, “Compact, Low Insertion-Loss, Sharp-Rejection, and Wide-Band Microstrip Bandpass Filters” IEEE Trans., MTT-51, P.1241-1246, 2003.

    27. K.C. Gupta, R.Garg, I.Bahl, and P.Bhartia, Microstrip Lines and Slotline, 2nd ed, Norwood, MA, 1996, P.181.

    28. J.J.Yu,S.T.Chew,M.S.Leong,and B.L.Ooi,”New class of microstrip miniaturized filter using triangular stub,”Electron.Lett.,vol.37,no.37,pp.1169-1170,Sept.2001.

    29. J.-R.Lee,J.-H.Cho,and S.-W.Yun,”New compact bandpass filter using microstrip 1/4 resonators with open stub inverter,” IEEE Wireless comp.Lett.,vol.10,pp.526-527,Dec.2000.

    30. W.E. Courtney:IEEE. Trans. MTT, Vol. MTT-8, PP.476-485, 1970.

    31. D.Kajfez “Computed Modal Field Distribution for Isolated Resonators”. IEEE. Trans. MTT, Vol. MTT-32, pp.1609-1616, 1984.

    32. D.Kajfez. and P. Guillon “Dielectric Resonators”, 1989.

    33. Y.Kobayashi and N. Katoh “Microwave Measurement of Resonator Method “ IEEE. Trans. MTT, Vol. MTT-33, PP.586-592, 1985.

    34. O.V.Karpova:Soviet Phys. Vol.1, PP.220, 1959.

    35. S.H. Cha:IEEE. Trans. MTT, Vol.MTT-33, PP.519, 1985.

    36. P. Wheless and D. Kajfez “The Use of Higher Resonant Modes in Measuring the Dielectric constant of Dielectric Resonators” IEEE. MTT-S, Symposium Dig. PP.473-
    476, 1985.

    37. B. W. Hakki and P.D. Coleman “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range” IEEE. Trans. MTT, Vol. MTT-8, PP.402-410, 1960.

    38. Y.Kobayashi and S. Tanaka “Resonant Modes of a Dielectric Resonator Short-Circuited at Both Ends by Parallel Conducting Plates” IEEE. Trans. MTT, Vol –28, PP.1077-1085, 1980.

    39. E.L.Ginztin “Microwave Measurement “ PP . 403-405, 1957.

    40. T.Higashi and T. Makino “Resonant Frequency Stability of the Dielectric Resonator on a Dielectric Substrate” IEEE. Trans MTT, Vol MTT-29, pp.1048-1052, 1981.

    下載圖示 校內:立即公開
    校外:2004-09-06公開
    QR CODE