簡易檢索 / 詳目顯示

研究生: 張育誠
Jhang, Yu-Cheng
論文名稱: 適用於有著未知干擾的非極小相位彈性臂系統之強健數位追蹤器設計:一種基於觀測/卡爾曼濾波器的方法
A Robust Digital Tracker Design for Unknown NMP Flexible Arm Systems with Disturbances: An OKID Based Approach
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 79
中文關鍵詞: 彈性臂系統觀測/卡爾曼濾波器鑑別方法非極小相位系統雜訊估測器最佳化二次線性追蹤器狀態估測器
外文關鍵詞: flexible arm systems, observer/Kalman filter identification (OKID), non-minimum phase systems (NMP), disturbance estimator, optimal linear quadratic tracker, state estimator
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出適用於有著未知干擾的方陣非極小相位彈性臂系統之強健數位追蹤器設計。主題包含了基於觀測/卡爾曼濾波器方法之具挑戰性的一軸以及多軸非極小相位彈性臂系統建模,暨針對未知雜訊之未知方陣系統,提出整合了具有著等效未知雜訊估測所建構的強健追蹤器。設計步驟過程中,本論文提出了零點配置之模型追蹤設計方法論。最後以數值範例說明所提出設計方法的優越性。

    A robust digital tracker design for unknown square non-minimum phase (NMP) flexible systems with disturbances have been proposed in this thesis. This includes the observer/Kalman filter method-based modellings of the challenging one-link and multi-link non-minimum phase flexible arm systems and the state estimator integrated with the equivalent-input-disturbance (EID) estimate robust tracker for the unknown square systems with unknown disturbances. During the design procedures, a zero-assignment reference model is also proposed in this thesis for the model following design methodology. Numerical examples are given to demonstrate the superiority of the proposed design.

    摘要 I Abstract II Acknowledgement III Contents IV List of Figures VI List of Tables XI Chapter 1 Introduction 1 Chapter 2 Mathematical Modeling of the Flexible Arm 2 2.1 Mathematical modeling based on Robert’s (1984) method 3 2.2 Mathematical modeling based on Talebi’s (2001) method 7 2.3 Modeling of the three-link flexible arm 11 Chapter 3 Observer/Kalman Filter Identification 12 3.1 Basic observer equation 12 3.2 Computation of Markov parameters 14 3.3 Eigensystem realization algorithm 15 Chapter 4 Digital Tracker Design for Unknown Square NMP System with Matched Disturbance 18 4.1 Design the current output-based state estimator and disturbance observer 19 4.2 Construct the estimation error dynamic equations 19 4.3 Perform the optimal linear quadratic observer design 20 4.4 Construct the artificial augmented model for servo control design 21 4.5 Perform the PICO-based optimal LQDT design 24 Chapter 5 Overall Design Procedure Integrated with Zero- Assignment Model Following 25 5.1 Reduction to pole assignment in the regular state-space system 26 5.2 Design procedure for zero-assignment 30 5.3 Overall design procedure 31 Chapter 6 Illustrative Examples 32 Chapter 7 Conclusion 76 References 77

    [1] Aoustin, Y., Chevallereau, C. and Glumineau, A. (2006). Experimental results for the end-effector control of a single flexible robotic arm. IEEE Transactions on Control Systems Technology, 2(4), 371-381.
    [2] Cannon, R.H., and Schmitz, E. (1984). Initial experiments on the end-point control of a flexible one-link robot. International Journal of Robotics Research, 3(3), 62-75.
    [3] Chang, J.L. (2006). Applying discrete-time proportional integral observers for state and disturbance estimations. IEEE Transactions on Automatic Control, 51(5), 814-818.
    [4] Chang, J.L., Ting, H.C., and Chen, Y.P. (2008). Robust discrete-time output tracking controller design for non-minimum phase systems. Journal of System Design and Dynamics, 2(4), 950-961.
    [5] Chen, B.S., and Yang, T.Y. (1993). Robust optimal model matching control design for flexible manipulators. Journal of Dynamic Systems, Measurement, and Control, 115(1), 173-178.
    [6] Chen, M.S., and Chen, C.C. (2010). Unknown input observer for linear non-minimum phase systems. Journal of the Franklin Institute, 347(2), 577-588.
    [7] Davison, E.J., and Wang, S.H. (1975). On pole assignment in linear multivariable systems using output feedback. IEEE Transactions on Automatic Control, 20(4), 516-518.
    [8] Davison, E.J., and Wonham, W.M. (1968). On pole assignment in multivariable linear systems. IEEE Transactions on Automatic Control, 13(6), 747-749.
    [9] Davison, E.J. (1970). On pole assignment in linear systems with incomplete sate feedback. IEEE Transactions on Automatic Control, 15(3), 348-351.
    [10] Davison, E.J., and Chatterjee, R. (1971). A note on pole assignment in linear systems with incomplete sate feedback. IEEE Transactions on Automatic Control, 16(1), 98-99.
    [11] Ding, F., and Chen, T. (2005). Gradient based iterative algorithms for solving a class of matrix equation. IEEE Transactions on Automatic Control, 50(8), 216-221.
    [12] Ebrahimzadeh, F., Tsai, J.S.H., Liao, Y.T., Chung, M.C., Guo, S.M., Shieh, L.S., and Wang, L. (2017). A generalized optimal linear quadratic tracker with universal applications-Part 1: Continuous-time systems. International Journal of Systems Science, 48(2), 376-396.
    [13] Ebrahimzadeh, F. Tsai, J.S.H., Chung, M.C., Liao, Y.T., Guo, S.M., Shieh, L.S., and Wang, L. (2017). A generalized optimal linear quadratic tracker with universal applications-Part 2: Discrete-time systems. International Journal of Systems Science, 48(2), 397-416.
    [14] Ebrahimzadeh, F. Tsai, J.S.H., and Lin Y.Y. (2017). An efficient robust servo design for non-minimum phase discrete-time systems with unknown matched/mismatched input disturbances. Automation, Control and Intelligent Systems, 5(2), 14-28.
    [15] Fallside, F., and Seraji, H. (1971). Pole-shifting procedure for multivariable systems using output feedback. Electrical Engineers, Proceedings of the Institution, 118(11), 1648-1654.
    [16] Juang, J.N. (1994) Applied System Identification. Prentice-Hall, Englewood Cliffs.
    [17] Kimura, H., (1975). Pole assignment by gain output feedback. IEEE Transactions on Automatic Control, 20(4), 509-516.
    [18] Mertzios, B.G., Christodoulou, M.A., Syrmos, B.L., and Lewis, F.L. (1988). Direct controllability and observability time domain conditions of singular systems. IEEE Transactions Automatic Control, 33(8), 788-791.
    [19] Miminis, G.S., and Paige, C.C. (1982). An algorithm for pole assignment of time-invariant linear systems. International Journal of Control, 35(2), 341-354.
    [20] Popescu, D., Sendrescu, D., and Bobasu, E. (2008). Modelling and robust control of a flexible beam Quanser experiment. Acta Montanistica Slovaca, 13(1), 127-135.
    [21] Talebi H.A, Patel R.V., and Khorasani K. (2001). Control of Flexible-Link Manipulators Using Neural Networks. Springer, London.
    [22] Tsai, J.S.H., Chien, T.H., Guo, S.M., Chang, Y.P., and Shieh, L.S. (2007). State-space self-tuning control for stochastic fractional-order chaotic systems. IEEE Transactions on Circuits and Systems I-Regular Papers, 54(3), 632-642.
    [23] Smagina, Ye. M. (2002). “Zero assignment in multivariable system using pole assignment method,” [Online]. Available: http://arxiv.org/abs/math/0207094.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE