簡易檢索 / 詳目顯示

研究生: 王嘉亨
Wang, Jia-Heng
論文名稱: 超音波霧化熱裂解法沉積氧化鋁於非平面式金氧半電容之特性研究
Characterization of Al2O3 Deposition by Ultrasonic Spray Pyrolysis Technique for Non-planar MOS Capacitor
指導教授: 許渭州
Hsu, Wei-Chou
共同指導教授: 江孟學
Chiang, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 53
中文關鍵詞: 金氧半電容非平面式結構超音波霧化熱裂解法
外文關鍵詞: MOS capacitor, non-planar structure, ultrasonic spray pyrolysis deposition.
相關次數: 點閱:96下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討利用超音波霧化熱裂解法沉積氧化鋁於非平面式之金氧半電容。透過實驗發現,超音波霧化熱裂解法有非常良好的包覆及填洞能力,因此非常適合應用於非平面式結構的介電層。為了瞭解超音波霧化熱裂解法沉積之氧化鋁的組成,在本論文中使用了穿透式電子顯微鏡、原子力顯微鏡及化學分析電子儀來進行量測和探討。從穿透式電子顯微鏡拍出的圖可以看到,超音波霧化熱裂解法成長的氧化鋁薄膜非常均勻且完整的包覆矽通道。另外,在膜厚控制上超音波霧化熱裂解法也相當精準,氧化鋁沉積速率大約每分鐘3.5奈米,氧化鋁薄膜大約20nm。在原子力顯微鏡量測中,可以發現氧化鋁薄膜相當平整,其方均根(RMS)值約為0.75nm。更進一步,利用化學分析電子儀量測發現,利用超音波霧化熱裂解法沉積的氧化鋁之鋁和氧的比例約為2比3,表示其氧化鋁薄膜有很好的品質。在瞭解薄膜之材料分析之後,接著進行電容-電壓(C-V)及電流-電壓(I-V)之電性分析。從C-V曲線中,可以計算出等效氧化層厚度(EOT)和實際氧化層厚度(t_ox)。發現t_ox和穿透式電子顯微鏡量出的厚度非常接近。接著,由I-V曲線可以計算出閘極電流密度。和其他不同的介電層製程比較,從外插法得到的趨勢線可以看出使用超音波霧化熱裂解法沉積的氧化鋁薄膜在較小的EOT情況下也能有很好的抑制漏電的能力。因此超音波霧化熱裂解法有應用於非平面式結構之介電層的潛力。

    This research proposes the characterization of aluminum oxide (Al2O3) deposition by ultrasonic spray pyrolysis (USP) technique for non-planar MOS capacitor. We found that the Al2O3 thin film deposited by USPD is very suitable as the dielectric layer of non-planar structure due to the excellent hole-filling and coverage ability.In order to analyze the oxide layer composition, we utilized the transmission electron microscopy (TEM), atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA) in this research. First, from the TEM images, we found that the Al2O3 thin film is fully wrapped around the Si channel, and the uniformity of Al2O3 is very good. Furthermore, the deposition rate of Al2O3 deposited by USPD is about 3.5nm per minute. The USPD method showed good thickness controllability for dielectric process. From AFM images, we observed that the surface of Al2O3 deposited by USPD is quite smooth. The root mean square (RMS) of USPD case is just 0.75nm. Moreover, we certified the composition of Al2O3 by ESCA. We found that the aluminum/oxygen ratio is about 2 : 3. It indicate the high quality of Al2O3 deposited by USPD.
    After material analysis, we executed the capacitance-voltage (C-V) and current-voltage (I-V) electrical characteristics analysis of our devices. We calculated the equivalent oxide thickness (EOT) and oxide thickness (t_ox) by capacitance value. We found that the calculated t_ox is quite similar to the oxide thickness measured from TEM. Then, we calculated the gate current density of our devices and compared to others dielectric layer process. The tendency of extrapolation line of USPD case shows good gate leakage immunity in small EOT. Therefore, the ultrasonic spray pyrolysis technique is suitable for the dielectric layer of non-planar structure.

    摘要 I Abstract III 誌謝 V Contents VII Figure Captions IX Table Captions XII CHAPTER 1 INTRODUCTION 1 1-1 Background and Motivation 1 1-2 Organization of This Thesis 4 CHAPTER 2 NON-PLANAR MOS CAPACITOR 5 2-1 Silicon-on insulator (SOI) 5 2-2 Dielectric layer of MOS structure 6 2-3 Non-planar structure 7 2-3-1 Fin/ Double-gate structure 7 2-3-2 Multi-gate structure 8 2-4 Development of non-planar structure 9 CHAPTER 3 DEVICES FABRICATION 11 3-1 Hard Mask Design 11 3-2 Fabrication Process 12 3-3 Mesa isolation 14 3-3 Channel release (For Omega shape and GAA shape) 15 3-3-1 Etching window 15 3-3-2 Wet etching 16 3-4 Dielectric layer deposition 16 3-4-1 Radio Frequency (RF) Sputtering 16 3-4-2 Atomic Layer Deposition (ALD) 17 3-4-3 Ultrasonic Spray Pyrolysis Deposition (USPD) 19 3-5 Probe pad formation 21 3-5-1 Removal of Al2O3 form probe pad 21 3-5-2 Metal deposition 22 3-5-3 Rapid Thermal Annealing (RTA) 22 3-6 Gate Schottky contact formation 23 3-6-1 Gate pattern lithography 23 3-6-2 Metal deposition and lift-off 23 CHAPTER 4 RESULTS AND DISCUSSION 24 4-1 Materials Analysis 24 4-1-1 Transmission Electron Microscopy (TEM) 24 4-1-2 Atomic Force Microscopy (AFM) 29 4-1-3 Electron Spectroscopy for Chemical Analysis (ESCA) 32 4-2 Electrical Characteristics 35 4-2-1 Capacitance-Voltage Analysis 35 4-2-2 Current-Voltage Analysis 45 CHAPTER 5 CONCLUSION 50 References 51

    [1]. L. Geppert, “The amazing vanishing transistor act,” IEEE Spectr., vol. 39, pp. 28-33, 2002.
    [2]. Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, S. C. Foo, and V. Sahmuganathan, “Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator,” Appl. Phys. Lett., vol. 95, pp. 223501-1-223501-3, 2009.
    [3]. P. Kordoš, D. Gregušová, R. Stoklas, Š. Gaž , and J. Novák, “Transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure Field-effect Transistors with Al2O3 of Different Thickness,” Solid-State Electron., vol. 52, pp. 973-979, 2008.
    [4]. S. Basu, P. K. Singh, P. W. Sze, and Y. H. Wang, “AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” J. Electrochem. Soc., vol. 157, pp. H947-H951, 2010.
    [5]. O. Seok, W. Ahn, M. K. Han, and M. W. Ha, “High on/off current ratio AlGaN/GaN MOS-HEMTs employing RF-sputtered HfO2 gate insulators,” Semicond. Sci. Technol., vol. 28, pp. 025001-1-025001-6, 2013.
    [6]. H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOS-HEMT Performance by Using Hydrogen Peroxide Oxidation Technique,” IEEE Trans. Electron Devices, vol. 60, pp. 213-220, 2013.
    [7]. Y. F. Chen, F. R. Chen, and C. H. Tsai, “Compositional Effect of precursor Solution on Formation of Aluminum Oxide Passivation Layer Using Ultrasonic Spray Pyrolysis Deposition,” Department of Engineering and System Science, National Tsing Hua University, pp. 2-13, 2011.
    [8]. S. M. Sze, Semiconductor devices: physics and technology-2nd ed, John Wiley and Sons, 1985.
    [9]. J. T. Park, and J.-P. Colinge, “Multiple-gate SOI MOSFETs: device design guidelines,” IEEE Trans. Electron Devices,” vol. 49, pp. 2222-2229, 2002.
    [10]. D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices,” vol. 47, pp. 2320-2325, 2000.
    [11]. Y. K. Choi, T. J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron Devices,” vol. 49, pp. 436-441, 2002.
    [12]. S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, “Carrier-transport-enhanced channel CMOS for improved power consumption and performance,” IEEE Trans. Electron Devices,” vol. 55, pp. 21-39, 2008.
    [13]. J. P. Colinge, “The SOI MOSFET:from single gate to multigate,” J. Microelectron. Eng., vol. 84, pp. 2071-2076, 2007.
    [14]. R. Doering and Y. Nishi, Handbook of semiconductor manufacturing technology, CRC press, London, 2008.
    [15]. F. Deng, R. A. Johnson, P. M. Asbeck, and S. S. Lau, “Salicidation process using NiSi and its device application,” J. Appl. Phys., vol. 81, pp. 8047-8051, 1997.
    [16]. G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Mircoscope,” Phys. Rev. Lett., vol. 56, pp. 930-933, 1986.
    [17]. Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force mircoscope-force mapping and profiling on a sub 100 Å scale,” Appl. Phys. Lett., vol. 61, pp. 4723-4729, 1987.
    [18]. Texas A&M Health Science Center, “Atomic Force Microscopy for Biological Applications.”
    [19]. Laboratory for Surface Modification, ”Principles of ESCA.”
    [20]. J. L. Hilton, Characterization and stability of the interfaces between manganese-based metals and compound semiconductors grown by molecular beam epitaxy, ProQuest Dissertations And Theses; Thesis (Ph.D.)--University of Minnesota. 2006.
    [21]. J. C. Ranua´rez, M. J. Deen *and C. H. Chen, “A review of gate tunneling current in MOS devices,” Microelectron. Reliab., vol. 46, pp. 1939–1956, 2006.
    [22]. Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. Hu, X. Wang, X. Guo, and T. P. Ma, “Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric,” IEEE Electron Device Lett., vol. 21, pp. 540-542, 2000.
    [23]. Y. C. Yeo, T. J. King and C. Hu, “MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations,” IEEE Trans. Electron Devices, vol. 50, pp. 1027-1035, 2003.

    下載圖示 校內:2020-08-11公開
    校外:2020-08-11公開
    QR CODE