| 研究生: |
劉介寧 Liou, Jie-Ning |
|---|---|
| 論文名稱: |
Li2X2(MoO4)3 (X=Co,Ni) 低溫燒結材料之微波特性與應用 Microwave Dielectric Properties and Applications of LTCC Using Li2X2(MoO4)3 (X=Co,Ni) |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 微波介電 、低溫 、低損耗 |
| 外文關鍵詞: | microwave dielectric, low-firable, low-loss |
| 相關次數: | 點閱:50 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要分別介紹四大部分,第一、二和三部分將介紹新開發的微波介電材料,第四部分介紹濾波器的模擬與實測。
首先第一部分為Li2Co2(MoO4)3陶瓷之微波介電特性,由實驗結果發現,在燒結溫度為840℃並持溫4小時擁有最佳的微波介電特性ε_r~9.1、Q×f~34,000 GHz、τ_f~-72 ppm⁄℃。第二部分為Li2Ni2(MoO4)3陶瓷之微波介電特性,觀察實驗結果,在燒結溫度為660℃並持溫4小時擁有最佳的微波介電特性ε_r~9.6、Q×f~28,000 GHz、τ_f~-71 ppm⁄℃。第三部分為利用Zn2+去進行少量取代,探討Li2Ni2-xZnx(MoO4)3 (0≤x≤0.1)陶瓷之微波介電特性,觀察實驗結果,在燒結溫度為660℃,x=0.05的Li2Ni1.95Zn0.05(MoO4)3擁有最佳的微波介電特性ε_r~10.9、Q×f~56,000 GHz、τ_f~-62 ppm⁄℃ 。
最後第四部分,我們以HFSS模擬濾波器電路,並將電路實作於FR4、氧化鋁、Li2Ni1.95Zn0.05(MoO4)3基板上,由結果可知,高介電常數能使電路面積縮小且高Q×f提高濾波器在頻率選擇上的表現。
In order to obtain a novel low-temperature co-fired ceramics, microwave dielectric properties of Li2Co2(MoO4)3 and Li2Ni2-xZnx(MoO4)3 (0≤x≤0.1) ceramics had been investigated. The experimental results show that Li2Co2(MoO4)3 has best properties at sintering temperature 840℃ for 4 hours, with ε_r~9.1, Q×f~34,000 GHz and τ_f~-72 ( ppm)⁄℃﹔the Li2Ni2(MoO4)3 has best properties at sintering temperature 660℃ for 4 hours, with ε_r~9.6 Q×f~28,000 GHz and τ_f~-71 ( ppm)⁄℃ ﹔the Li2Ni1.95Zn0.05(MoO4)3 has best properties at sintering temperature 660℃ for 4 hours, with ε_r~10.9 Q×f~56,000 GHz and τ_f~-62 ( ppm)⁄℃.In this paper, the band-pass filter was designed with Square open-loop resonator which contains Open-stub. According to the results of measurements, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate, and its size was reduced by using high dielectric constant ceramics.
1. Kawashima, S. G. Choi, J. Kim, S. Yoon and K. Hong, "Microwave dielectric properties of scheelite (A=Ca, Sr, Ba) and wolframite (A=Mg, Zn, Mn) AMoO4 compounds", Journal of the European Ceramic Society, vol. 27, no. 8-9, pp. 3063-3067, 2007.
2. D. Zhou, C. Randall, L. Pang, H. Wang, X. Wu, J. Guo, G. Zhang, L. Shui and X. Yao, "Microwave Dielectric Properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) Lyonsite-Related-Type Ceramics with Ultra-Low Sintering Temperatures", Journal of the American Ceramic Society, vol. 94, no. 3, pp. 802-805, 2010
3. Vreeland, F.K., A Sine-Wave Electrical Oscillator of the Organ Pipe Type. Physical Review (Series I), 1908. 27(4): pp. 286.
4. Goerth, J. Early magnetron development especially in Germany. in Origins and Evolution of the Cavity Magnetron (CAVMAG), 2010 International Conference on the. 2010. IEEE.
5. Varian, R.H. and S.F. Varian, A high frequency oscillator and amplifier. Journal of Applied Physics, 1939. 10(5): pp. 321-327.
6. Thumm, M. Historical German contributions to physics and applications of electromagnetic oscillations and waves. in Proc. Int. Conf. on Progress in Nonlinear Science, Nizhny Novgorod, Russia. 2001.
7. Redhead, P., The Invention of the Cavity Magnetron and its Introduction into Canada and the USA. Physics in Canada, 2001. 57(6): pp. 321.
8. Richtmyer, R., Dielectric resonators. Journal of Applied Physics, 1939. 10(6):p p. 391-398.
9. Cohn, S.B., Microwave bandpass filters containing high-Q dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 1968. 16(4): pp. 218-227.
10. Smith, W.F., 劉品均(譯), 施佑蓉(譯), 材料科學與工程(第三版). 2005: 高立圖書.
11. Cahn, J.W. and R. Heady, Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles. Journal of the American Ceramic Society, 1970. 53(7): pp. 406-409.
12. Huppmann, W.J. and G. Petzow, Sintering processes. 1979: Plenum Press.
13. German, R., Liquid phase sintering, 1985. Chapter. 1: pp. 5-8.
14. Jean, J. and C. Lin, Coarsening of tungsten particles in W-Ni-Fe alloys. Journal of materials science, 1989. 24(2): pp. 500-504.
15. Pozar, D.M., Microwave engineering. 2009: John Wiley & Sons.
16. Kajfez, D., Basic principles give understanding of dielectric waveguides and resonators. Microwave System News, 1983. 13: pp. 152-161.
17. Kajfez, D., A.W. Glisson, and J. James, Computed modal field distributions for isolated dielectric resonators. IEEE transactions on Microwave Theory and Techniques, 1984. 32(12): pp. 1609-1616.
18. 張盛富, 戴明鳳, 無線通信之射頻被動電路設計 1998: 全華出版社.
19. 鄭景太, 淺談高頻低損失介電材料. 工業材料,176期, 2001.
20. W.D.Kingery, et al., 陶瓷材料概論. 1988: 曉園出版社.
21. Hakki, B. and P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques, 1960. 8(4): pp. 402-410.
22. Courtney, W.E., Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Transactions on Microwave Theory and Techniques, 1970. 18(8): pp. 476-485.
23. Wheless, P. and D. Kajfez. The use of higher resonant modes in measuring the dielectric constant of dielectric resonators. in Microwave Symposium Digest, 1985 IEEE MTT-S International. 1985. IEEE.
24. Kobayashi, Y. and M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques, 1985. 33(7): pp. 586-592.
25. Sebastian, M.T. and H. Jantunen, Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008. 53(2): pp. 57-90.
26. Geiger, R.L., P.E. Allen, and N.R. Strader, VLSI design techniques for analog and digital circuits. Vol. 90. 1990: McGraw-Hill New York.
27. Pucel, R.A., D.J. Masse, and C.P. Hartwig, Losses in microstrip. IEEE transactions on microwave theory and techniques, 1968. 16(6): pp. 342-350.
28. Hong, J.-S.G. and M.J. Lancaster, Microstrip filters for RF/microwave applications. Vol. 167. 2004: John Wiley & Sons.
29. Kompa, G., Practical microstrip design and applications. 2005: Artech House.
30. Garg, R., I. Bahl, and M. Bozzi, Microstrip lines and slotlines. 2013: Artech house.
31. Matthaei, G.L., L. Young, and E.M.T. Jones, Microwave filters, impedance matching networks and coupling structures. Artech House, 1980.
32. Denlinger, E.J., Losses of microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 1980. 28(6): pp. 513-522.
33. Zhang, X.-C., Z.-Y. Yu, and J. Xu, Design of microstrip dual-mode filters based on source-load coupling. IEEE Microwave and Wireless Components Letters, 2008. 18(10): pp. 677-679.
34. Zhou, M., X. Tang, and F. Xiao, Miniature microstrip bandpass filter using resonator-embedded dual-mode resonator based on source-load coupling. IEEE Microwave and Wireless Components Letters, 2010. 20(3): pp. 139-141.
35. Lee, J.-R., J.-H. Cho, and S.-W. Yun, New compact bandpass filter using microstrip/spl lambda//4 resonators with open stub inverter. IEEE Microwave and Guided Wave Letters, 2000. 10(12): pp. 526-527.
36. Chung, M.-S., I.-S. Kim, and S.-W. Yun. Varactor-tuned hairpin bandpass filter with enhanced stopband performance. in Microwave Conference, 2006. APMC 2006. Asia-Pacific. 2006. IEEE.
37. Li, Y., et al., Pressure-induced amorphization of metavanadate crystals SrV2O6 and BaV2O6. Journal of Applied Physics, 2015. 118(3): pp. 035902.
38. Joung, M.R., et al., Formation process and microwave dielectric properties of the R2V2O7 (R= Ba, Sr, and Ca) ceramics. Journal of the American Ceramic Society, 2009. 92(12): pp. 3092-3094.
39. Tang B., Luo X., Fang Z., Zhou L., Zhang S., et al.,Microeave dielectric properties and crystal structure of CeO2 doped (Na1/2Nd1/2)TiO3 ceramics. Journal of Ceramic Silikaty, 2017. 61(4): pp. 354.
40. Shannon, R.D., Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied physics, 1993. 73(1): pp. 348-366.
41. Q. Ashton Acton, PhD,Issues in Applied Physics, 2011
42. M. Zhang, L. Li, W. Xia, Q. Liao, J. Alloys Comp. 537 (2012) pp.76–79.
校內:2024-08-28公開