| 研究生: |
王志浩 Wang, Jyh-Haw |
|---|---|
| 論文名稱: |
適用於未知資料取樣非線性且具有輸入─輸出傳輸項的正規系統之低階主動容錯狀態空間自調器 A Low-Order Active Fault-Tolerant State Space Self-Tuner for the Unknown Sampled-Data Nonlinear Regular System with an Input-Output Feedthrough Term |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 狀態空間自調式控制 、資料取樣非線性奇異系統 、ARMAX模型 、容錯控制 、觀測器/卡爾曼濾波器鑑別 、系統鑑別 |
| 外文關鍵詞: | State space self-tuner control, sampled-data nonlinear singular system, ARMAX model, fault tolerant control, observer/Kalman filter identification, system identification |
| 相關次數: | 點閱:196 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對未知資料取樣的非線性且具有輸入─輸出傳輸項的正規系統,本論文藉由數位重新設計技術提出兩個創新的控制方案:其一是以觀測器為基礎的數位重新設計追蹤器,藉由觀測器/卡爾曼濾波器鑑別為方法的狀態反饋和前饋增益所設計的高效能追蹤器,以達到良好的追蹤特性。其二是以當有輸入錯誤的主動容錯狀態空間自調式控制器,基於觀測器/卡爾曼濾波器與修飾的ARMAX模型為系統鑑別方法基礎的數位重新設計追蹤器。研究主題陳述如下:首先,針對輸出響應追蹤問題,提出應用離線的觀測器/卡爾曼濾波器鑑別方法,可以決定未知資料取樣系統的合宜(-低階)維度,以及提供較佳的初始參數為修飾的ARMAX模型系統,可顯著改善其遞歸擴展最小平方(RELS)法的收斂速度。接著,基於修飾的ARMAX模型為系統鑑別方法的基礎,針對未知資料取樣的非線性奇異系統之不可量測系統的狀態問題,提出一個相對應的適應性數位控制方案。更進一步的,為了克服介面的輸入故障的問題,容錯控制和修飾的傳統自調式控制器,也被提出。所提的方法能有效的處理部分突發式與漸進式的輸入故障問題。在本論文中,舉出一些例子,也包含一個實際的電路系統,來說明所提方法之有效性。
A singular system can be reformulated into the equivalent regular system model with an input-output direct feedthrough term from the input to the output. This dissertation proposes two new control schemes for the unknown sampled-data nonlinear singular system. One is an observer-based digital redesign tracker with the state-feedback gain and the feed-forward gain based on off-line observer/Kalman filter identification (OKID) method. The presented control scheme is able to make the unknown sampled-data nonlinear singular system to well track the desired reference signal. The other is an active fault tolerance state-space self-tuner using the OKID method and modified autoregressive moving average with exogenous inputs (ARMAX) model-based system identification for unknown sampled-data nonlinear singular system with input faults. First, one can apply the off-line OKID method to determine the appropriate (low-) order of the unknown system order and good initial parameters of the modified ARMAX model to improve the convergent speed of recursive extended-least-squares (RELS) method. Then, based on modified ARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown sampled-data nonlinear singular system with the unmeasurable system state. Moreover, in order to overcome the interference of input fault, one can use a fault-tolerant control scheme for the unknown sampled-data nonlinear singular system by modifying the conventional self-tuner control (STC). The presented method can effectively cope with partially abrupt and/or gradual system input faults. Finally, some illustrative examples, including a real circuit system, are given to demonstrate the effectiveness of the presented design methodologies.
[1] Andrei, N., Sparse Systems: Digraph Approach of Large-Scale Linear Systems Theory. Verlag TÜV Rheinland, Köln, 1985.
[2] Astrom, K.J. and Wittenmark, B., Adaptive Control. NY: Addison-Wesley, 1989.
[3] Bondi, P., Casalino, G., and Gambardella, L., “On the iterative learning control theory for robotic manipulators,” IEEE Journal of Robotics and Automation, vol. 4(1), pp. 14-22, 1988.
[4] Boskovic, J. and Mehra, R. K., “A multiple model-based reconfigurable fight control system design,” In Proceedings of the 37th IEEE conference on Decision and Control, Tampa, FL, pp. 4503-4508, 1998.
[5] Campbell, S. L., Singular Systems of Differential Equations I. Pitman, New York, 1982.
[6] Chang, W., Park, Y. H., Joo, Y. H., and Chen, G., “Design of sampled-data fuzzy-model-based control systems by using intelligent digital redesign,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 49(4), pp. 509-517, 2002.
[7] Chang, Y. P., Tsai, J. S. H., and Shieh, L.S., “Optimal digital redesign of hybrid cascaded state-delay systems under state and control constraints,” IEEE Transactions Circuits System, vol. 49(9), pp. 1382-1392, 2002.
[8] Chang, Y. P., Malki, H., Tsai, J. S. H., Shieh, L. S., and Chen, G., “Chaos-EP-based digital redesign of uncertain hybrid time-delay systems with state and input constraints,” IEEE Transactions on Instrumentation & Measurement, vol. 58(12), pp. 3959-3971, 2009.
[9] Chen, C. W., Hung, J. K., Phan, M., and Juang, J. N., “Integrated system identification and modal state estimation for control of large flexible space structures,” Journal of Guidance, Control, and Dynamics, vol. 15(1), pp. 88-95, 1992.
[10] Chen, G. and Ueta, T., “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 9, pp. 1465-1466, 1999.
[11] Chen, Y. C., A Low-Order Active Fault-Tolerant State-Space Self-Tuner for Unknown Linear Singular System Using OKID and Modified ARMAX Model-Based System Identification. M.S. Thesis, National Cheng Kung University, Tainan, Taiwan, 2009.
[12] Dai, L., Singular Control Systems. Berlin, Germany: Springer-Verlag, 1989.
[13] Davison, E. J., “The robust decentralized control of a servomechanism problem for composite system with input-output interconnection,” IEEE Transactions on Automatic Control, vol. 24(2), pp. 325-327, 1979.
[14] Davison, E. J. and Aghdam, A. G., Decentralized Control of Large-Scale Systems. Springer Verlag, 2011.
[15] Dedieu, H. and Ogorzalek, M. J., “Controlling chaos in Chua’s circuit via sampled inputs,” International Journal of Bifurcation Chaos, vol. 4(2), pp. 447-455, 1994.
[16] Funga, E. H. K., Wongb, Y. K., Hoa, H. F., and Mignolet, M. P., “Modelling and prediction of machining errors using ARMAX and NARMAX structures,” Applied Mathematical Modelling, vol. 27(8), pp. 611–627, August 2003.
[17] Ganmacher, F. R., The Theory of Matrices II. Chelsea, New York, 1974.
[18] Gilbert, E. G., “Controllability and observability in multivariable control systems,” SIAM Journal on Control, vol. 2(1), pp. 128-151, 1963.
[19] Gao, Z. and Antsaklis, P. J., “Stability of the pseudo-inverse method for reconfigurable control systems,” International Journal of control, vol.53, pp. 717-729, 1991.
[20] Gavel, D. T. and Seljuk, D. D., “Decentralized adaptive control: Structural conditions for stability,” IEEE Transactions on Automatic Control, vol. 34(4), pp. 413-426, 1989.
[21] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
[22] Guo, S. M., Shieh, L. S., Lin, C. F., and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid systems,” International Journal of Bifurcation Chaos, vol. 11(4), pp. 1079-1113, 2001.
[23] Ho, B. L. and Kalman, R.E., “Effective construction of linear state-variable models from input-output data,” Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, University of Illinois, Monticello, IL, pp. 449-459, 1965.
[23] Ho, B. L. and Kalman, R.E., “Effective construction of linear state-variable models from input-output data,” Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, University of Illinois, Monticello, IL, pp. 449-459, 1965.
[24] Huang, C. Y. and Stengel, R. F., “Restructurable control using proportional-integral implicit model following,” Journal of Guidance, Control, and Dynamics, vol. 13, pp. 303-309, 1990.
[25] Ioannou, P. A. and Sun, J., Robust Adaptive Control. Prentice-Hall, Englewood, 1996.
[26] Jiang, J., “Design of reconfigurable control systems using eigenstructure assignment,” International Journal of control, vol. 59, pp. 395-410, 1994.
[27] Joo, Y. H., Chen, G., and Shieh, L. S., “Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems,” IEEE Transactions Fuzzy Systems, vol. 7(4), pp. 394-408, 1999.
[28] Juang, J. N. and Pappa, R. S., “Effects of noise on modal parameters identified by the eigensystem realization algorithm,” Journal of Guidance, Control and Dynamics, vol. 3, pp. 294-303, 1986.
[29] Juang, J. N. and Pappa, R. S., “A comparative overview of modal testing and system identification for control of structures,” Shock and Vibration Digest, vol. 20(5), pp. 4-15, 1988.
[30] Juang, J. N., Horta, L. G., and Longman, R. W., “Input/output system identification: learning from repeated experiments,” AIAA Monograph on Progress in Astronautics and Aeronautics, vol. 29, pp. 87-99, 1990.
[31] Juang, J. N., Applied System Identification. Prentice-Hall, Englewood Cliffs, New Jersey, 1994.
[32] Kailath, T., “An innovation approach to least-squares estimation. Part I: Linear filtering in additive white noise,” IEEE Transactions on Automatic Control, vol. 13, pp. 646-655, 1968.
[33] Kim, T. A. and Sugie, T., “An iterative learning control based identification for a class of MIMO continue-time systems in the presence of fixed input disturbance and measurement noises,” International Journal of Systems Science, vol. 38(9), pp. 737-748, 2007.
[34] Kothare, M. V., Campo, P. J., Morari, M., and Nett, C. N., “A unified framework for the study of anti-windup designs,” Automatica, vol. 30(12), pp. 1869-1883, 1994.
[35] Kuo, B. C., Digital Control System. Holt, Rinehart, and Winston, New York, 1980.
[36] Kuo, B. C., Automatic Control Systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.
[37] Lewis, F. L., “A survey of linear singular systems,” Journal Circuit Syst. Signal Process., vol. 5, pp. 3-36, 1986.
[38] Lewis, F. L. and Syrmos, V. L., Optimal Control. John Wiley & Sons, New York, 1995.
[39] Lee, H. J., Park, J. B., and Joo, Y. H., “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 50(12), pp. 1595-1601, 2003.
[40] Lin, M. J., Novel design methodologies for quadratic observers and trackers of sampled–data linear singular system. M.S. Thesis, National Cheng Kung University, Tainan, Taiwan, 2009.
[41] Ljung, L., System Identification Theory for the User. Englewood Cliffs. NJ: Prentice-Hall, 1987.
[42] Looze, D. P., Weiss, J. L., Eterno, J. S., and Barrett, N. M., “An automatic redesign approach for restructurable control systems,” IEEE control System Magazine, pp. 16-22, May, 1985.
[43] Maybeck, P. S. and Stevens, R. D., “Reconfigurable flight control via multiple model adaptive control methods,” IEEE Transactions on Aerospace and Electronic Systems, vol. 27, pp. 470-479, May 1991.
[44] Mertzios, B. G., Christodoulou, M. A., Syrmos, B. L., and Lewis, F. L., “Direct controllability and observability time domain conditions of singular systems,” IEEE Transactions Automatic Control, vol. 33(8), pp. 788-791, 1988.
[45] Moerder, D. D., Halyo, N., Broussard, J. R., and Caglayan, A. K., “Application of precomputed control laws in a reconfigurable aircraft flight control system,” Journal of Guidance, Control, and Dynamics, vol. 12, pp.325-333, 1989.
[46] Morse, W. D. and Ossman, K. A., “Model following reconfigurable flight control systems for the AFTI/F-16,” Journal of Guidance, Control, and Dynamics, vol. 13, pp. 969-976, 1990.
[47] Napolitano, M. R., Naylor, S., Neppach, C., and Casdorph, V., “On-line learning nonlinear direct neurocontrollers for restructurable control systems,” Journal of Guidance, Control, and Dynamics, vol. 18, pp. 170-176, 1995.
[48] Napolitano, M. R. and Swaim, R. L., “New technique for aircraft flight control reconfiguration,” Journal of Guidance, Control, and Dynamics, vol. 14, pp. 184-190, 1991.
[49] Nikoukhah, R., Willsky, A.S., and Levy, B.C., “Boundary-value descriptor systems: Well-posedness, reachability and observability,” Int. J. Control, vol. 46 (5) pp. 1715-1737, 1987.
[50] Pappa, R. S. and Juang, J. N., “Some experiences with the eigensystem realization algorithm,” Sound and Vibration, vol. 22(1), pp. 30-35, 1988.
[51] Phan, M., Juang, J. N. and Longman, R. W., “Identification of linear multivariable systems from a single set of data by identification of observers with assigned real egienvalues,” Journal of Astronautical Sciences, vol. 40(2), pp. 261-279, 1992.
[52] Phan, M., Horta, L. G., Juang, J. N., and Longman, R.W., “Linear system identification via an asymptotically stable observer”, Journal of Optimization Theory and Applications, vol. 79(1), pp. 59-86, 1993.
[53] Rajamani, R., “Observers for Lipschitz nonlinear systems,” IEEE Transactions Automatic Control, vol. 43(3), pp. 397-401, 1998.
[54] Ralston, A., A First Course in Numerical Analysis. Dover Publications: McGraw-Hill, NY, 1965.
[55] Ramezani, M. H. and Sadati, N., “Hierarchical optimal control of large-scale nonlinear chemical processes,” ISA Transactions, vol. 48(1), pp. 28-47, 2009.
[56] Rauch, H. E., “Autonomous control reconfiguration,” IEEE control System Magazine, pp. 37-48, Dec. 1995.
[57] Roberts, J. D., “Linear model reduction and solution of the algebraic Riccati equation by use of the sign function,” Int. J. Control, vol. 32, pp. 677-687, 1980.
[58] Sandell, N. R. Jr., Varaiya, P., Athans, M., and Safonov, M. G., “Survey of decentralized control methods for large scale systems,” IEEE Transactions on Automatic Control, vol. 23(2), pp. 108-128, 1978.
[59] Shieh, L. S., Bao, Y. L., and Chang, F. R., “State-space self-tuning regulators for general multivariable stochastic systems,” IET Contr. Theory Appl., vol. 136, pp. 17-27, 1989.
[60] Shieh, L. S., Dib, H. M., and Yates, R. E., “Sequential design of linear quadratic state regulators via the optimal root-locus techniques,” Proceedings of the IEE (England) Part D: Control Theory and Applications, vol. l35(4), pp. 289-294, 1988.
[61] Shieh, L. S., Dib, H. M., and Ganesan, S., “Linear quadratic regulators with eigenvalue placement in a specified region,” Automatica, vol. 24(6), pp. 8l9-823, 1988.
[62] Shieh, L. S., Chen, G., and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of Systems Science, vol. 23(6), pp. 839-854, 1992.
[63] Shieh, L. S., Wang, W. M., and Appupanicker, M. K., “Design of PAM and PWM digital controller for cascaded analog system,” ISA Transactions, vol. 37(3), pp. 201-213, 1998.
[64] Shieh, L. S., Wang, W., and Tsai, J. S. H., “Optimal digital redesign of hybrid uncertain systems using genetic algorithms,” IEE Processing-Control Theory Applications, vol. 146(2), pp. 119-130, 1999.
[65] Shieh, L, S., Wang, W. M., Bain, J., and Chandra, J., “Design of lifted dual-rate digital controllers for X-38 vehicle,” Journal of Guidance, Control and Dynamics, vol. 23(4), pp. 629-639, 2000.
[66] Šiljak, D. D., Large Scale Dynamic Systems: Stability and Structure. North-Holland, New York, 1978.
[67] Singh, M. G., Decentralised Control. North-Holland, Amsterdam, 1981.
[68] Soderstrom, T. and Stoica, P., System Identification. Englewood Cliffs: Prentice-Hall, 1989.
[69] Sun, L. Y. and Wang, Y. Z., “Stabilization and control of a class of non-linear Hamiltonian descriptor systems with application to non-linear descriptor systems,” IET Contr. Theory Appl. vol. 4(1), pp. 16-26, 2010.
[70] Sun, M. and Wang, D., “Initial shift issues on discrete-time iterative learning control with system relative degree,” IEEE Transactions on Automatic Control, vol. 48(1), pp. 144-148, 2003.
[71] Tan, K. K., Zhao, S., and Xu, J. X., “Online automatic tuning of a proportional integral derivative controller based on an iterative learning control approach,” IET Control Theory and Application, vol. 1(1), pp. 90-96, 2007.
[72] Tarbouriech, S. and Turner, M., “Anti-windup design: an overview of some recent advances and open problems,” IET Control Theory and Applications, vol. 3(1), pp. 1-19, 2009.
[73] Teixeira, M. C. M. and Zak, S. H., “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Trans. Fuzzy Syst., vol. 7(2), pp. 133-142, 1999.
[74] Tiwari, P. Y., Mulder, E. R., and Kothare, M. V., “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52(12), pp. 2341-2345, 2007.
[75] Tsai, J. S. H., Chien, T. H., Guo, S. M., Chang, Y. P., and Shieh, L. S., “State-space self-tuning control for stochastic fractional-order chaotic systems,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 54(3), pp. 632-642, 2007.
[76] Tsai, J. S. H., Wei, C. L., Guo, S. M., Shieh, L. S., and Liu, C. R., “EP-based adaptive tracker with observer and fault estimator for nonlinear time-varying sampled-data systems against actuator failures,” Journal of the Franklin Institute, vol. 345(5), pp. 508-535, 2008.
[77] Tsai, J. S. H., Wang, C. T., and Shieh, L. S., “Model conversion and digital redesign of singular systems,” J. Frankl. Inst.-Eng. Appl. Math., vol. 330, pp. 1063-1086, 1993.
[78] Tsai, J. S. H., Wang, C. T., Kuang, C. C., Guo, S. M. , Shieh, L.S., and Chen, C. W., “A NARMAX model-based state-space self-tuning control for nonlinear stochastic hybrid systems,” Applied Mathematical Modelling, vol. 34, pp. 3030-3054, 2010.
[79] Tsai, J. S. H., Chen, F. M., Guo, S. M., Chen, C. W., and Shieh, L. S., “A novel tracker for a class of sampled-data nonlinear systems,” Journal of Vibration and Control, vol. 17(1), pp. 81-101, 2011.
[80] Tsai, J. S. H., Du, Y. Y., Huang, P. H., Guo, S. M., and Shieh, L. S., “Iterative learning-based decentralized adaptive tracker for large-scale systems: A digital redesign approach,” ISA Transactions, vol. 50, pp. 344-356, 2011.
[81] Tsai, J. S. H., Du, Y. Y., Zhuang, W. Z., Guo, S. M., Chen, C. W., and Shieh, L. S., “Optimal anti-windup digital redesign of multi-unput multi-output control systems under input constraints,” IET Control Theory Applications, vol. 5(3), pp. 447-464, 2011.
[82] Tsai, J. S. H., Lee, Y. Y., Cofie, P., Shieh, L. S., and Chen, X. M., “Active fault tolerant control using state-space self-tuning control approach,” Int. J. Syst. Sci., vol. 37(11), pp. 785-797, 2006.
[83] Tsay, Y. T. and Shieh, L. S., “State-space approach for self-tuning feedback control with pole assignment,” IET Control Theory Applications, vol. 123, pp. 93-101, 1981.
[84] Tsay, Y. T., Shieh, L. S., and Barnett, S., Structural Analysis and Design of Multivariable Control Systems: An Algebraic Approach, Berlin, Heidelberg: Springer-Verlag, 1988.
[85] Valluri, S. and Soroush, M., “A non-linear controller design method for processes with saturating actuators,” International Journal Control, vol. 76(7), pp. 698-716, 2003.
[86] Wang, C. J. and Liao, H. E., “Impulse observability and impulse controllability of linear time-varying singular systems,” Automatica, vol. 37, pp. 1867-1872, 2001.
[87] Wang, H. J., Xue, A. K., Guo, Y. F., and Lu, R.Q., “Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays,” J. Zhejiang Univ.-SCI A, vol. 9 (4), pp. 546-551, 2008.
[88] Wang, Y., Gao, F., and Dole III, F. J., “Survey on iterative learning control, repetitive control, and run-to-run control,” Journal of Process Control, vol. 19(10), pp. 1589-1600, 2009.
[89] Warwick, K., “Self-tuning regulators–a state space approach,” Int. J. Control, vol. 33, pp. 839-858, 1981.
[90] Wu, H. S., “Decentralized robust control for a class of large-scale interconnected systems with uncertainties,” International Journal of System Science, vol. 20(12), pp. 2597-2608, 1989.
[91] Wu, F. and Lu, B., “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52(4), pp. 305-322, 2004.
[92] Xu, J., Chen, G., and Shieh, L. S., “Digital redesign for controlling chaotic Chua’s circuit,” IEEE Transaction Aerospace and Electronic System, vol. 32, pp. 1488-1499, 1996.
[93] Xu, J. X. and Qu, Z., “Robust learning control for a class of nonlinear systems,” IEEE Proceedings of the 35th Conference on Decision and Control, vol. 3, pp. 2484-2489, 1996.
[94] Xu, J. X. and Tan, Y., Linear and Nonlinear Iterative Learning Control. Springer-Berlin, Heidelberg, 2003.
[95] Xu, J. X., Panda, S. K., and Lee, T. H., Real-time Iterative Learning Control Design and Applications. Springer-Verlag, London, 2009.
[96] Xu, X. X. and Xu, J. X., “Observer based learning control for a class of nonlinear systems with time-varying parametric uncertainties,” IEEE Transactions on Automatic Control, vol. 49(2), pp. 275-281, 2004.
[97] Ye, Y., Tayebi, A., and Liu, X., “All-pass filtering in iterative learning control,” Automatica, vol. 45(1), pp. 257-264, 2009.
[98] Yen, G. G. and Ho, L. W., “Online multiple-model-based fault diagnosis and accommodation,” IEEE Trans. Ind. Electron., vol. 50, pp. 296-312, 2003.
[99] Yi, S., Nelson, P. W., and Ulsoy, A. G., “Controllability and observability of systems of linear delay differential equations via the matrix Lambert W function,” IEEE Transactions on Automatic, vol. 53(3), pp. 854-860, 2008.
[100] Yokoyama, T., Kosuge, K., and Furuta, K., “Digital redesign of robot control,” IEEE Industrial Electronics Society of the Annual Conference, vol. 2, pp. 409-414, 1989.
[101] Yoon, S. S., Park, J. K., and Yoon, T. W., “Dynamic anti-windup scheme for feedback linearizable nonlinear control systems with saturating inputs,” Automatica, vol. 44(12), pp. 3176-3180, 2008.
[102] Zhang, Y. and Jiang, J., “Integrated Active Fault-Tolerant Control Using IMM Approach,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37(4) 2001.
[103] Zaccarian, L. and Teel, A. R., “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49(11), pp. 2055-2061, 2004.