| 研究生: |
巫泓憲 Wu, Hung-Hsien |
|---|---|
| 論文名稱: |
應用於物聯網之低輸入電壓獵能晶片設計 Design of Energy Harvesting Chips with Low Input Voltage for IoT Applications |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 升壓型 、直流—直流轉換器 、低電壓啟動 、啟動機制 、輸出電壓漣波 |
| 外文關鍵詞: | boost, dc–dc converter, output voltage ripple, startup, startup strategy |
| 相關次數: | 點閱:110 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文旨在探討適用於物聯網應用的低電壓、低功率之升壓型直流—直流轉換器。本文提出兩種不同的控制方法,以屏除傳統轉換器對補償器的需求,並抑制輸出電壓漣波。另針對此升壓型直流—直流轉換器在不同應用環境提出三種啟動機制,分別達成低電壓啟動(155毫伏)、簡化啟動機制及屏除一次性輔助啟動電路需求。最後,以直流—直流轉換器為基礎,設計一具儲能及調節功能之新型轉換器架構(單電感雙供給電源轉換器),其主要是為解決物聯網相關產品之電源供給問題。上述控制方法、啟動機制及轉換器架構分別實現於四個獨立晶片,且四晶片均使用台灣積體電路公司 180 奈米製程製作。
This dissertation mainly focuses on the design of low voltage/power boost dc–dc converter for internet-of-things (IoT) applications. This dissertation proposes two control methods to suppress the output voltage ripple. Both of them can be implemented without any compensator. Moreover, this dissertation proposes three different startup strategies for different applications. One of them can successfully startup with a 155-mV input voltage, while the other two simplify the startup procedure and eliminate the circuits that are only activated at startup. Finally, this dissertation proposes a novel topology, which features storing the energy and conditioning the output voltage, i.e., Single-Inductor Dual-Supply (SIDS) converter. The SIDS converter is designed for the power management of IoT applications. In fact, “one topology”, “two control methods”, and “three startup strategies”, are implemented in four independent chips. All the chips were fabricated by using the TSMC 0.18-μm 1P6M mixed-signal process.
[1] S. K. Kamarudin, F. Achmad, and W. R. W. Daud, “Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices,” Int. J. Hydrogen Energy, vol. 34, no. 16, pp. 6902–6916, Aug. 2009.
[2] R.-J. Wai and R.-Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847–856, Jul. 2005.
[3] Y. Wang and D. Ma, “A 450-mV single-fuel-cell power management unit with switch-mode quasi-V2 hysteretic control and automatic startup on 0.35-μm standard CMOS process,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2216–2226, Sep. 2012.
[4] C. Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265–2274, Nov. 2005.
[5] R. C.-H. Chang, H.-M. Chen, C.-H. Chia, and P.-S. Lei, “An exact current-mode PFM boost converter with dynamic stored energy technique,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1129–1134, Apr. 2009.
[6] C.-S. Lee, Y.-J. Oh, K.-Y. Na, Y.-S. Kim, and N.-S. Kim, “Integrated BiCMOS control circuits for high-performance dc–dc boost converter,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2596–2603, May 2013.
[7] R. C.-H. Chang, H.-M. Chen, W.-C. Cheng, C.-H. Chia, P.-S. Lei, and Z.-Y. Lin, “Adaptive sense current control for dc–dc boost converters to get accurate voltage,” IEICE Trans. Electron., vol. E92-C, no. 8, pp. 1066–1072, Aug. 2009.
[8] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS dc–dc converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[9] E. N. Y. Ho and P. K. T. Mok, “Design considerations of recent advanced monolitic current-mode dc–dc converters,” in Proc. 2011 IEEE 8th Int. Conf. Power Electronics and ECCE Asia (ICPE & ECCE), pp. 334–337.
[10] C.-L. Wei, C.-H. Chen, K.-C. Wu, and I-T. Ko, “Design of an average-current-mode noninverting buck–boost dc–dc converter with reduced switching and conduction losses,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4934–4943, Dec. 2012.
[11] Y. Lee, S. Huang, S. Wang, W. Wu, P. Huang, H. Ho, Y. Lai, and K. Chen, “Power-tracking embedded buck–boost converter with fast dynamic voltage scaling for the SoC system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1271–1282, Mar. 2012.
[12] W.-C. Chen, C.-S. Wang, Y.-P. Su, Y.-H. Lee, C.-C. Lin, K.-H. Chen, and M.-J. Du, “Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for buck converter with multilayer ceramic capacitors,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2366–2376, May 2013.
[13] H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang, and D. Chen, “Monolithically integrated boost converter based on 0.5-μm CMOS process,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 628–638, May 2005.
[14] P.-H. Chen, X. Zhang, K. Ishida, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “An 80 mV startup dual-mode boost converter by charge-pumped pulse generator and threshold voltage tuned oscillator with hot carrier injection,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2554–2562, Nov. 2012.
[15] J.-P. Im, S.-W. Wang, S.-T. Ryu, and G.-H. Cho, “A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3055–3067, Dec. 2012.
[16] T. Y. Man, P. K. T. Mok, and M. J. Chan, “A 0.9-V input discontinuous-conduction-mode boost converter with CMOS-control rectifier,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2036–2046, Sep. 2008.
[17] Y. T. Wong, C. W. Ng, H. M. Wan, K. K. Kwong, Y. H. Lam, and W. H. Ki, “Near-threshold startup integrated boost converter with slew rate enhanced error amplifier,” in proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2009, pp. 2409–2412.
[18] H.-M. Chen, R. C. Chang, and J.-L. Wu, “A low-voltage integrated current-mode boost converter for portable power supply,” in proc. IEEE Int. Conf. Electronics, Circuits and Systems, 2007, pp. 1316–1319.
[19] K. Z. Ahmed, S. M. K. Bari, D. Islam, and A. B. M. Harun-ur Rashid, “Design and implementation of PFM mode high efficiency boost regulator,” Analog Integrated Circuits and Signal Processing, vol. 71, pp. 349–358, Jun. 2012.
[20] J. Kim and C. Kim, “A dc–dc boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3827–3833, Aug. 2013.
[21] A. Richelli, L. Colalongo, S. Tonoli, and Z. M. Kovács-Vajna, “A 0.2–1.2 V DC/DC boost converter for power harvesting applications,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1541–1546, Jun. 2009.
[22] A. Richelli, S. Comensoli, and Z. M. Kovács-Vajna, “A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2701–2708, Jun. 2012.
[23] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mV-input batteryless boost converter for thermal energy harvesting,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031–1041, Apr. 2013.
[24] Y. K. Ramadass and A. P. Chandrakasan, “A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage”, IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 333–341, Jan. 2011.
[25] P.-H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “A 95mV-startup step-up converter with VTH-tuned oscillator by fixed-charge programming and capacitor pass-on scheme”, in proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 216–217.
[26] R. D. Prabha and G. A. Rincón-Mora, “Battery-assisted and photovoltaic-sourced switched-inductor CMOS harvesting charger–supply”, in proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2013, pp. 253–256.
[27] J. A. Stankovic, “Research directions for the Internet of Things,” IEEE Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.
[28] M. H. Braga, N. S. Grundish, A. J. Murchison, and J. B. Goodenough, “Alternative strategy for a safe rechargeable battery,” Energy Environ. Sci., vol. 10, no. 1, pp. 331–336. Jan. 2017.
[29] Y. K. Tan and S. K. Panda, “Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4424–4435, Sep. 2011.
[30] N. J. Guilar, R. Amirtharajah, P. J. Hurst, and S. H. Lewis, “An energy-aware multiple-input power supply with charge recovery for energy harvesting applications,” in proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 298–299.
[31] S. V. Dhople, A. Davoudi, and P. L. Chapman, “Dual-stage converter to improve transfer efficiency and maximum power point tracking feasibility in photovoltaic energy-conversion systems,” in proc. IEEE APEC, Feb. 2010, pp. 2138–2142.
[32] K. Z. Ahmed and S. Mukhopadhyay, “A 190 nA bias current 10 mV input multistage boost regulator with intermediate-node control to supply RF blocks in self-powered wireless sensors,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1322–1333, Feb. 2016.
[33] A. Klinefelter, N. E. Roberts, Y. Shakhsheer, P. Gonzalez, A. Shrivastava, A. Roy, K. Craig, M. Faisal, J. Boley, S. Oh, Y. Zhang, D. Akella, D. D. Wentzloff, and B. H. Calhoun, “A 6.45μW self-powered IoT SoC with integrated energy-harvesting power management and ULP asymmetric radios,” in proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 384–385.
[34] N.-M. Sze, F. Su, Y.-H. Lam, W.-H. Ki, and C.-Y. Tsui, “Integrated single-inductor dual-input dual-output boost converter for energy harvesting applications,” in proc. IEEE Int. Symp. Circuits and Systems (ISCAS), May 2008, pp. 2218–2221.
[35] H. Shao, X. Li, C.-Y. Tsui, and W.-H. Ki, “A novel single-inductor dual-input dual-output dc–dc converter with PWM control for solar energy harvesting system,” IEEE Trans. VLSI Syst., vol. 22, no. 8, pp. 1693–1704, Aug. 2014.
[36] S. Kim and G. A. Rincón-Mora, “Single-inductor dual-input dual-output buck-boost fuel-cell-li-ion charging dc–dc converter supply,” in proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 444–445.
[37] R. D. Prabha and G. A. Rincón-Mora, “0.18-µm light-harvesting battery-assisted charger–supply CMOS system,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2950–2958, Apr. 2016.
[38] K. Z. Ahmed and S. Mukhopadhyay, “A single-inductor-cascades-stage topology for high conversion ratio boost regulator,” in proc. IEEE Int. Conf. Computer Design (ICCD), Oct. 2016, pp. 487–491.
[39] G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang, and L. Siek, “A 400 nW single-inductor dual-input–tri-output dc–dc buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2758–2772, Nov. 2015.
[40] C.-W. Liu, M.-J. Chung, H.-H. Lee, P.-C. Liao, and P.-H. Chen, “A single-inductor triple-input-triple-output (SITITO) energy harvesting interface with cycle-by-cycle source tracking and adaptive peak-inductor-current control,” in Proc. 2017 IEEE Asian Solid-State Circuits Conference (ASSCC), Nov. 2017, pp. 113–116.
[41] S. S. Amin and P. P. Mercier, “MISIMO: a multi-input single-inductor multi-output energy harvester employing event-driven MPPT control to achieve 89% peak efficiency and a 60,000 dynamic range in 28nm FDSOI,” in proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 144–145.
[42] R. Redl, and J. Sun, “Ripple-Based Control of Switching Regulators—An Overview,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669–2680, Dec. 2009.
[43] S. Liu, X. Wu, F. Yuan, and M. Zhao, “An Adaptive On-Time Controlled Boost LED Driver with High Dimming Ratio,” in Proc. 38th Annual Conference on IEEE Industrial Electronics Society, Oct. 2012, pp. 210–214.
[44] C.-Y. Wang, J.-S. Guo, C.-Y. Huang, and C.-H. Tsai, “A high efficiency DC/DC boost regulator with adaptive off/on-Time control,” in Proc. 2013 International Symposium on VLSI Design, Automation, and Test (VLSI-DAT 2013), Apr. 2013.
[45] E. Sackinger and W. Guggenbuhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, vol. 22, no. 2, pp. 287–294, Apr. 1987.
[46] K. Lee, H. Kim, J. Yoon, H. S. Oh, B. H. Park, H Park, and Y. Lee, “A high efficiency wide-load-range asynchronous boost converter with time-based dual-mode control for SSD applications,” in Proc. 2016 IEEE Asian Solid-State Circuits Conference (ASSCC), Nov. 2016, pp. 13−16.
[47] Y.-P. Su, Y.-K. Luo, Y.-C. Chen, and K.-H. Chen. “Current-mode synthetic control technique for high-efficiency dc–dc boost converters over a wide load range,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 8, pp. 1666–1678, Aug, 2014.
[48] Y.-S. Hwang, J.-J. Chen, B.-H. Lai, Y.-T. Ku, and C.-C. Yu, “A fast-transient boost converter with noise-reduction techniques for wireless sensor networks,” IEEE Sensor Journal, vol. 16, no. 9, pp. 3188−3197, May. 2016.
[49] Z. Sun, K. W. R. Chew, H. Tang, and L. Siek, “Adaptive gate switching control for discontinuous conduction mode dc–dc converter,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1311–1320, Mar. 2014.
[50] Y. Lu, S. Yao, B. Shao, and P. Brokaw, “A 200nA single-inductor dual-input-triple-output (DITO) converter with two-stage charging and process-limit cold-start voltage for photovoltaic and thermoelectric energy harvesting” in proc. IEEE ISSCC Dig. Tech. Papers, Jan. 2016, pp. 368–369.
[51] Y.-J. Park, J.-H. Park, H.-J. Kim, H. Ryu, S. Kim, Y. Pu, K. C. Hwang, Y. Yang, M. Lee, and K.-Y. Lee, “A design of a 92.4% efficiency triple mode control dc–dc buck converter with low power retention mode and adaptive zero current detector for IoT/wearable applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6946–6960, Sep. 2017.
[52] P.-H. Chen, C.-S. Wu, and K.-C. Lin, “A 50 nW-to-10 mW output power tri-mode digital buck converter with self-tracking zero current detection for photovoltaic energy harvesting,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 523–532, Feb. 2016.
[53] C. Huang and P. K. T. Mok, “An 84.7% efficiency 100-MHz package bondwire-based fully integrated buck converter with precise DCM operation and enhanced light-load efficiency,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2595–2607, Nov. 2013.
[54] H.-H. Wu, C.-L. Wei, Y.-C. Hsu, and R. B. Darling, “Adaptive peak-inductor-current-controlled PFM boost converter with a near-threshold startup voltage and high efficiency,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1956–1965, Apr. 2015.
[55] D. El-Damak and A. P. Chandrakasan, “A 10 nW–1 µW power management IC with integrated battery management and self-startup for energy harvesting applications,” IEEE J. Solid-State Circuits, vol. 51, no. 4, pp. 943–954, Apr. 2016.
[56] J. Goeppert and Y. Manoli, “Fully integrated startup at 70 mV of boost converters for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1716–1726, Jul. 2016.