簡易檢索 / 詳目顯示

研究生: 徐福啟
Hsu, Fu-Chi
論文名稱: 以鐵氧磁體/環氧樹脂複合材料製備可撓式電感之研究
Preparing flexible inductors by using ferrite/epoxy composites
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 103
中文關鍵詞: 可撓式電感鐵氧磁體環氧樹脂
外文關鍵詞: Flexible inductors, Epoxy resin, Ferrite
相關次數: 點閱:148下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用PCB積層製程技術將電感元件以積層的方式埋入於epoxy或polyimide基板中,不但可提升基板的封裝密度,並符合軟性電子基板可撓性之需求。本研究以鐵氧磁體、環氧樹脂及溶劑所配製之漿料,利用塗佈的方式將其製成薄膜,以取代PCB基板中之預浸布(prepreg)。此外,本研究透過添加鈦酸酯耦合劑對鐵氧磁體粉末表面進行改質,進而改善粉末與樹脂的分散性質;並藉由添加液態橡膠 (CTBN),改善鐵氧磁體/環氧樹脂複合薄膜的機械性質。實驗結果得知,耦合劑濃度2.0wt%及CTBN添加量15 phr時所製得之複合薄膜有較佳的分散性質及機械性質。

    To embed inductors into epoxy or polyimide substrates using PCB processing technology can increase the integration density and conform to the flexibility requirement for flexible electronics. In this study, the composite films prepared by coating ferrite/epoxy paste were used to replace the prepreg of PCB substrates. Titanium coupling agent was used to modify the surfaces of NiZn ferrites powders to improve the dispersion property in organic solvent. Moreover, CTBN was added into the ferrite-epoxy suspensions to improve the mechanical property of composite films. The ferrite/epoxy composite films prepared by adding with 2.0wt% of coupling agent and 15 phr of CTBN show a well dispersion property, a good dielectric property, and a strong mechanical property.

    摘要 i Abstract ii 致謝 iii 目錄 v 表目錄 vii 圖目錄 vii 第一章 緒論 1 1-1 前言 1 1-2 研究方向及目的 1 第二章 前人研究及理論基礎 4 2-1 銅箔基板及埋入式元件 4 2-1-1 銅箔基板的簡介 4 2-1-2 埋入式被動元件的簡介 5 2-1-3 含浸液 6 2-1-4 製作流程 6 2-2 懸浮液的分散理論 9 2-2-1 懸浮液的分散 9 2-2-2 懸浮液的流變性質 10 2-3 耦合劑 12 2-3-1 耦合劑的作用 12 2-3-2 鈦酸酯耦合劑 12 2-4 環氧樹脂 15 2-4-1 環氧樹脂的簡介 15 2-4-2 硬化 16 2-5 液態橡膠 20 2-5-1 液態橡膠增韌方法 20 2-5-2 增韌機構 21 2-6 高分子/鐵氧磁體複合材料 25 2-6-1 鐵氧磁體粉末 26 2-6-2 高分子黏結劑 27 2-6-3 添加劑 28 第三章 實驗方法及步驟 29 3-1 材料 29 3-1-1 鐵氧磁體 29 3-1-2 耦合劑 30 3-1-3 溶劑系統 30 3-1-4 環氧樹脂及添加劑 30 3-1-5 液態橡膠 31 3-2 鎳鋅鐵氧磁體/環氧樹脂漿料及複合薄膜的製備 34 3-2-1 鎳鋅鐵氧磁體表面改質 34 3-2-2 沉降實驗 34 3-2-3 黏度分析 35 3-2-4 鎳鋅鐵氧磁體/環氧樹脂漿料的製備 35 3-2-5 鎳鋅鐵氧磁體/環氧樹脂複合薄膜的製備 36 3-3 試片特性分析 42 3-3-1 傅立葉轉換紅外線光譜分析儀( FTIR ) 42 3-3-2 穿透式電子顯微鏡( TEM ) 42 3-3-3 熱重損失分析儀( TG ) 42 3-3-4 動態機械分析儀( DMA ) 43 3-3-5 萬能拉伸機 44 3-3-6 掃描式電子顯微鏡( SEM ) 44 3-3-7 介電分析儀 45 3-3-8 電感分析 46 第四章 結果與討論 47 4-1 不同配比之鎳鋅鐵氧磁體/環氧樹脂複合材料薄膜製備之討論 48 4-1-1 不同耦合劑濃度之漿料對薄膜製備上的影響 49 4-1-2 不同液態橡膠添加量之漿料對薄膜製備上的影響 50 4-1-3 不同固含量之漿料對薄膜製備上的影響 51 4-2 鈦酸酯耦合劑對鎳鋅鐵氧磁體之改質效果 55 4-2-1 傅立葉紅外線光譜之分析 55 4-2-2 沉降實驗之分析 60 4-2-3 穿透式電子顯微鏡之分析 62 4-3 溶劑系統與環氧樹脂的流變行為 65 4-4 耦合劑濃度對鎳鋅鐵氧磁體/環氧樹脂複合材料薄膜的影響 68 4-4-1 掃描式電子顯微鏡之分析 68 4-4-2 介電性質之分析 69 4-5 液態橡膠添加量對鎳鋅鐵氧磁體/環氧樹脂複合材料薄膜的影響 73 4-5-1 掃描式電子顯微鏡之分析 73 4-5-2 拉伸實驗之分析 73 4-5-3 熱動態機械性質之分析 74 4-5-4 介電性質之分析 76 4-5-5 熱重損失分析 76 4-6 鐵氧磁體固含量對鎳鋅鐵氧磁體/環氧樹脂複合材料薄膜的影響 84 4-6-1 掃描式電子顯微鏡之分析 84 4-6-2 拉伸實驗之分析 84 4-6-3 熱動態機械性質之分析 85 4-6-4 介電性質之分析 86 4-6-5 熱重損失分析 88 4-6-6 電感性質之分析 88 第五章 結論 99 參考文獻 100

    [1]翁維祥,銅箔基板環氧樹脂含浸液之研究,國立中央大學化學工程研究所碩士論文,2001。
    [2]D.J. Newman, M.J. Aggleton, “Glass-epoxy multilayer material for printed circuits,” Physics in Technology, 8, 10, (1977)
    [3]王士豪,埋入式被動元件整合於軟性電路板之研究,大同大學機械工程研究所碩士論文,2005。
    [4]D. R. Saini, V. M. Nadkarni, P. D. Grover, K. D. P. Nigam, “Dynamic mechanical, electrical and magnetic properties of ferrite filled styrene-isoprene-styrene,” Journal of Materials Science, 21, 3710~3716, (1986)
    [5]Iwasaki, Yuzawa, Akita, “Multilayer EMC devices using GHz absorption of iron-resin composite materials,” IEMT/IMC Proceedings, 362~367, (1997)
    [6]L. Ramajo, M.S. Castro, M.M. Reboredo, “Effect of silane as coupling agent on the dielectric properties of BaTiO3-epoxy composites,” Composites Part A, 38, 1852~1859, (2007)
    [7]C. A. Wah, L. Y. Choong, G. S. Neon, “Effects of titanate coupling agent on rheological behavior, dispersion characteristics and mechanical properties of talc filled polypropylene,” European Polymer Journal, 36, 789~801, (2000)
    [8]K. W. Paik, J. G. Hyun, S. Lee, K. W. Jang, “Epoxy-BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors in organic substrates,” ESTC 2006 -1st Electronics Systemintegration Technology Conference, 2, 794~801, (2007)
    [9]J. Xu, S. Bhattacharya, P. Pramanik, C.P. Wong, “High dielectric constant polymer-ceramic (epoxy varnish-barium titante) nanocomposites at moderate filler loadings for embedded capacitors,” Journal of Electronic Materials, 35, 11, (2006)
    [10]Z. M. Dang, H. Y. Wang, H. P Xu, “Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites,” Applied Physics Letters, 89, 112902, (2006)
    [11]S. D. Cho, J. Y. Lee, J. G. Hyun, K. W. Paik, “Study on epoxy-BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications,” Materials Science and Engineering B, 110, 233~239, (2004)
    [12]Z. M. Dang, Y. F Yu, H. P Xu, J. Bai, “Study on microstructure and dielectric property of the BaTiO3-epoxy resin composites”, Composites Science and Technology, 68, 171~177, (2008)
    [13]W. Christiansen, D. Shirrell, B. Aguirre, J. Wilkins, “Thermal stability of electrical grade laminates based on epoxy resins,” IPC Printed Circuit EXPO, S02-1-1~7, (2001)
    [14]J. H Jean, S. F Yeh, “Dispersion of glass powders in organic media,” Materials Chemistry and Physics, 71, 155~160, (2001)
    [15]C. J. Hsu, J. H Jean, “Formulation and dispersion of NiCuZn ferrite paste,” Materials Chemistry and Physics, 78, 323~329, (2002)
    [16]W. J. Tseng, C. N. Chen, “Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions,” Materials Sciences and Engineering, A347, 145~153, (2003)
    [17]D. M. Liu, “Particle packing and rheological property of highly-concentrated ceramic suspensions: Φm determination and viscosity prediction,” Journal of Materials Science, 35, 5503~5507, (2000)
    [18]林俊良,鈦酸鋇陶瓷粉體於乙醇-異丙醇混合液之分散與流變性質研究,中國文化大學材料科學與製造研究所碩士論文,2002。
    [19]蔡兆宇,鈦酸酯耦合劑對有機溶劑系統中Co2Z鐵氧磁體分散性質影響之研究,國立成功大學資源工程研究所碩士論文,2003。
    [20]詹英楠,改質黏土-環氧樹脂奈米複合材料製備與性質,國立中興大學化學工程研究所碩士論文,2003。
    [21]陳正健,雙酚A環氧樹脂與甲基六氫苯酐之硬化及改質研究,南台科技大學化學工程研究所碩士論文,2004。
    [22]C. C. Riccardi, R. J. J. Williams, “A kinetic scheme for an amine-epoxy reaction with simultaneous etherification,” Journal of Applied Polymer Science, 32, 3445~3456, (1986)
    [23]H. S. Kin, P. Ma, “Correlation between stress-whitening and fracture toughness in rubber-modified epoxies,” Applied Polymer Science, 61, 659~662, (1996)
    [24]J. He, D. Raghavan, D. Hoffman, D. Hunston, “The influence of elastomer concentration on toughness in dispersions containing preformed acrylic elastomeric particles in an epoxy matrix,” Polymer, 40, 1923~1933, (1999)
    [25]C. W. Wise, W.D. Cook, A.A. Goodwin, “CTBN rubber phase precipitation in model epoxy resins,” Polymer, 41, 4625~4633, (2000)
    [26]B. G. Russell, “A study of the influence of micro and nano phase morphology on the mechanical properties of a rubber-modified epoxy resin,” PHD the University of Dayton, 2002
    [27]B. A. Rozenberg, G. M. Sigalov, “Morphology control at phase separation of curing multicomponent thermosets,” Polymers for Advanced Technologies, 7, 356~364, (1995)
    [28]邱長塤,奈米黏土補強液態橡膠-環氧樹脂之研究,逢甲大學紡織工程研究所碩士論文,2004。
    [29]E. H. Merz, G. C. Claver, M. Baer, “Studies on heterogeneous polymeric systems,” Journal of Polymer Science, 22, 325~341, (1956)
    [30]S. Newman, S. Strella, “Stress-strain behavior of rubber-reinforced glassy polymers,” Journal of Applied Polymer Science, 9, 2297~2310, (1965)
    [31]J. A. Schmitt, H. Keskkula, “Short-time stress relaxation and toughness of rubber-modified polystyrene,” Journal of applied Polymer Science, 3, 132~142, (1960)
    [32]J. Tirosh, W. Nachlis, D. Hunston, “Strength behavior of toughened polymers by fibrous (or particulate) elastomers,” Mechanics of Materials, 19, 329~342, (1995)
    [33]R. A. Pearson, R. Bagheri, “Role of particle cavitation in rubber-toughened epoxies II. Inter-particle distance,” Polymer, 41, 269~276, (2000)
    [34]O. Mauzac, R. Schirrer, “Effect of particle volume fraction on crack-tip crazes in high impact poly (methyl methacrylate) ,” Journal of Applied Polymer Science, 38, 2289~2302, (1989)
    [35]R. Dosoudil, M. Usakova, J. Franek, J. Slama, V. Olah, “RF electromagnetic wave absorbing properties of ferrite polymer composite materials,” Journal of Magnetism and Magnetic Materials, 304, e755~e757, (2006)
    [36]P. M. Raj, P. Muthana, T. D. Xiao, L. Wan, D. balaraman, I. R. Abothu, S. Bhattacharya, M. Swaminathan, R. Tummala, “Magnetic nanocomposites for organic compatible miniaturized antennas and inductors,” Proceedings-2005 10th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005, 272~275, (2005)
    [37]I. Kowase, T. Sato, K. Yamasawa, Member, IEEE, Y. Miura, Fellow, IEEE, “A planar inductor using Mn-Zn ferrite-polyimide composite thick film for low-Voltage and large-current DC-DC converter,” IEEE Transactions on Magnetics, 41, 10, 3991~3993, (2005)
    [38]T. D. Xiao, X. Q. Ma, H. Zhan, D. E. Reisner, P. M. Raj, L. Wan, R. Tummala, “Magnetic nanocomposite paste: an ideal high- μ, k and Q nanomaterial for embedded Inductors in high frequency electronic applications,” Procs. 9th World Multiconference on Systemics, Cybernetics and Informatics, July 10~13, 2005, Orlando, FL.
    [39]陳奕瀚,以離子型高分子製備核殼型與中空型奈米磁性複合微粒之研究,南台科技大學化學工程研究所碩士論文,2006。
    [40]C. Domenici, G. Levita, A. Marchetti, V. Frosini, “Dielectric behavior of a rubber-toughened epoxy resin,” Journal of Applied Polymer Science, 34, 2285~2298, (1987)
    [41]A. I. Balabanovich, A. Hornung, D. Merz, H. Seifert, “The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins,” Polymer Degradation and Stability, 85, 713~723, (2004)
    [42]V. Nigam, D. K. Setua, G. N. Mathur, “Characterization of rubber epoxy blends by thermal analysis,” Journal of Thermal Analysis and Calorimetry, 64, 521~527, (2001)

    下載圖示 校內:2014-08-01公開
    校外:2014-08-01公開
    QR CODE