簡易檢索 / 詳目顯示

研究生: 陳昭蓉
Chen, Jau-Rung
論文名稱: 微型半導體電阻式氧氣感測器感測薄膜之研究
Study on Sensing Thin Films of Semiconductor-Type Oxygen Gas Sensors
指導教授: 羅錦興
Luo, Jin-Shing
李國賓
Li, Guo-Bin
洪昭南
Hung, Jau-Nan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 74
中文關鍵詞: 靈敏度多孔隙旋轉塗佈法濺鍍法氧氣感測器二氧化錫薄膜
外文關鍵詞: tin dioxide thin film, Oxygen gas sensor, sputtering, sensitivity, spin coating
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究分別以濺鍍法與凝膠旋轉塗佈法沉積二氧化錫薄膜。主要目的是探討不同鍍膜方式與製程參數對二氧化錫薄膜的微結構與對氧氣的感測性之影響,並比較找出彼此間的關係。

      濺鍍過程中,本研究使用摻雜2wt%鋰原子的二氧化錫做為感測薄膜的靶材,氬氣與氧氣流量比為3:1的條件下作濺鍍製程,之後在空氣下做600℃、2小時的退火處理。經靜態量測後發現,當工作溫度在300℃時,對氧氣具有最高靈敏度,其值為25.1。

      另外,以凝膠旋轉塗佈法方式沉積二氧化錫薄膜可得到具多孔隙薄膜的微結構。鍍膜後,在空氣下做650℃,1小時的退火處理,薄膜具有比濺鍍產生的薄膜高的表面積。經靜態量測後,當工作溫度在250℃時,可得到對氧氣具有最高靈敏度,其值為111。

      因此,以凝膠旋轉塗佈法方式沉積二氧化錫感測薄膜會比濺鍍法沉積二氧化錫感測薄膜得到對氧氣有較高的靈敏度值,而工作溫度也較低。

     In this study, two fabrication methods were used to deposit the tin dioxide thin film to investigate the influence of the fabrication parameters on the lattice orientation and oxygen gas sensitivity of the tin dioxide thin films.

     The tin dioxide layer with the 2 wt% doped Li, which served as the sensing materials, was deposited by sputtering with Ar/O2 (3:1) gas mixtures and annealed in an oxygen gas at 600℃ for 2 hours. By the static measurement, the experimental data showed that the maximum sensitivity was 25.1, and it achieved when the tin dioxide film was grown at 300℃.

     With the spin coating process, the porous films with high surface areas can be generated, and the sensitivity for O2 gas can reach 111. By the static measurement, experimental data also indicated that the pours film will generate the maximum sensitivity when the tin oxide films are grown at 250℃.

     Thus, the sensitivity of the tin dioxide thin film used the spin coating process deposition is higher than that of sputtering method. In addition, the temperature of the former is also at lower than that of the latter.

    目錄 中文摘要 I 英文摘要 II 致謝 III 目錄 V 表目錄 IX 圖目錄 X 符號說明 XV 第一章 諸論 1.1前言.........................................1 1.2研究動機.....................................2 1.3文獻回顧.....................................3 1.3.1半導體式氧氣感測器之感測材料應用.........5 1.3.2 二氧化錫感測薄膜沉積方式................7 1.3.3 二氧化錫的薄膜製程與微結構之關係........9 1.4 本研究之製程選擇與研究方法..................9 1.4.1 濺鍍法..................................9 1.4.2 旋轉鍍膜法 .............................10 第二章 理論基礎 2.1 二氧化錫結構與特性簡介.....................11 2.2 二氧化錫導電之機制.........................12 2.3 二氧化錫感測氣體之機制.....................13 2.3.1 氣體吸附於二氧化錫的機制...............13 2.3.2 氧氣的吸附.............................14 2.3.3 還原氣體的吸附.........................16 2.3.4 水氣的吸附.............................17 2.4 影響感測性質之因素.........................18 2.4.1 降低晶粒尺寸...........................18 2.4.2 表面催化劑的作用.......................19 2.5 溶膠-凝膠法基本理論........................21 2.6 旋轉塗佈法之原理...........................22 第三章 量測晶片之設計與製作 3.1 量測晶片基材、絕緣層與電極之材料選擇.......24 3.1.1 基材的選擇.............................24 3.1.2 電阻與絕緣層的材料選擇.................27 3.1.3 感測層的材料選擇.......................28 3.2量測晶片之製作..............................29 3.2.1 微機電製程技術的簡介...................30 3.2.1.1 光罩設計與製作.....................33 3.2.1.2 晶片的清洗.........................35 3.2.2 濺鍍法製程薄膜之晶片的製作流程.........36 3.2.3 旋轉塗佈成膜之晶片的製作流程...........40 第四章 實驗方法 4.1 實驗流程圖.................................45 4.2 實驗步驟...................................46 4.2.1利用濺鍍方式製備二氧化錫薄膜............46 4.2.2利用濺鍍方式製備二氧化錫薄膜............48 4.3 性質測試..................................48 4.3.1 X光繞射分析............................48 4.3.2 掃描式電子顯微鏡分析...................50 4.4 感測層之氣體靈敏度量測.....................50 第五章 結果與討論 5.1 濺鍍法製備二氧化錫之薄膜...................53 5.1.1 XRD與SEM結構分析........53 5.1.2 表面分析...............................55 5.1.3二氧化錫(2wt%鋰)薄膜對氧氣的感測特性....56 5.2旋轉鍍膜法製備二氧化錫之薄膜................57 5.2.1 XRD與SEM結構分析.......................58 5.2.2二氧化錫薄膜對氧氣的感測特性............58 5.3量測晶片製程之問題..........................60 第六章 結論與未來展望 6.1 結論.......................................62 6.2 未來展望...................................63 參考文獻.......................................64 自述...........................................74

    [1] 吳建中, “早產兒能量消耗量測之微感測器的研製,” 國立成功大學電機工程學系,博士論文( 2004)
    [2] 陳美杏, “微型半導體式氧氣感測器之設計製作與測試,” 國立成功大學工程科學學系,碩士論文( 2003)
    [3] E. Martin, O. Ingremeau, M. Corazza and M. Billon, “A piezoelectric oxygen transducer based on paramagnetic properties: the TOPP sensor,” Sensors and Actuators B, Vol. 26-27, pp. 293-296, 1995.
    [4] K. R. Sridhar, J. A. Blanchard, “Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor,” Sensors and Actuators B, Vol. 59, pp. 60-67, 1999.
    [5] G. L. Tan, X. J. Wu, L. R. Wang, Y. Q. Chen, “Investigation for oxygen sensor of LaF3 thin film,” Sensors and Actuators B, Vol. 34, pp. 417-421, 1996.
    [6] S. Liu, H. Shen and J. Feng, “Effects of gas flow-rates on a Clark-type oxygen gas sensor,” Analytica Chimica Acta, Vol. 313, pp. 89-92, 1995
    [7] H. Ogino and K. Asakura, “Development of a highly sensitive galvanic cell oxygen sensor,” Talanta, Vol. 42, No.2, pp. 305-310, 1995.
    [8] V. I. Ogurtsov and D. B. Papkovsky, “Selection of modulation frequency of excitation for luminescence lifttime-based oxygen sensors,” Sensors and Actuators B, Vol. 51, pp. 377-381, 1998.
    [9] W. P. Kang and C. K. Kim, “Performance analysis of a new metal-insulator-semiconductor capacitor incorporated with Pt-SnOx catalytic layers for the detection of O2 and CO gases,” J. Appl. Phys. , Vol.75, No. 8, pp. 4237-4242, 1994.
    [10] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. Kerns, “Current conduction mechanism and gas adsorption effects on device parameters of the Pt/SnOx/Diamond gas sensor,” IEEE Transactions on electron devices, Vol. 46, No. 5, pp. 914-920, 1999.
    [11] G. Sberveglieri, W. Hellmich, G. Muller, “Silicon hotplates for metal oxide gas sensor elements,” Microsystem Technologies, Vol. 3, pp. 183-190, 1997.
    [12] N. Barsan, A. Tomescu, “The temperature dependence of the response of SnO2-based gas sensing layers to O2, CH4 and CO,” Sensors and Actuators B, Vol. 26-27, pp. 45-48, 1995.
    [13] J. Atkinson, A. Cranny, C. Simonis , “A low-cost oxygen sensor fabricated as a screen-printed semiconductor device suitable for unheated operation at ambient temperatures,” Sensors and Actuators B, Vol. 47, pp. 171-180, 1998.
    [14] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. kerns, “ A novel oxygen gas sensor utilizing thin film diamond diode with catalyzed tin oxide electrode,” Sensors and Actuators B, Vol. 35-36, pp. 303-307, 1996.
    [15] C. Podaru, V. Avramescu, R. Enache, G. Stoica, “TiO2 anodic oxide films for oxygen gas sensors,” J. Electrochem. Soc, pp. 565, 1998.
    [16] M. Li, Y. Chen, “An investigation of response time of TiO2 thin-film oxygen sensors,” Sensors and Actuators B, Vol.32, pp. 83-85, 1996.
    [17] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, “Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor,” Sensors and Actuators B, Vol. 45, pp. 209-215, 1997.
    [18] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, “Mechanism in Nb doped titania oxygen gas sensor,” Sensors and Actuators B, Vol.46, pp. 194-201, 1998.
    [19] M. Ogita, K. Higo, Y. Nakanishi, Y. Hatanaka, “Ga2O3 thin film for oxygen sensor at high temperature,” Applied Surface Science, Vol. 175-176, pp721-725, 2001.
    [20] M. Fleischer, H. Meixner, “Fast gas sensors based on metal oxides which are stable at high temperatures,” Sensors and Actuators B, Vol. 43, pp. 1-10, 1997.
    [21] V. Demarne, S. Balkanova, D. Rosenfeld and F. Levy, “Integrated gas sensor for oxygen detection,” Sensors and Actuators B, Vol. 13-14, pp. 497-498, 1993.
    [22] I. Kosacki, H. L. Tuller, “Donor-doped Gd2Ti2O7 as a semiconductor-type oxygen sensor,” Sensors and Actuators B, Vol. 24-25, pp. 370-374, 1995.
    [23] D. Rosenfeld, P. E. Schmid, S. Szeles, F. Levy ,”Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors,” Sensors and Actuators B, Vol. 37, pp. 83-89, 1996.
    [24] J. Gerblinger, W. Lohwasser, U. Lampe, H. Meixner, “High temperature oxygen sensor based on sputtered cerium oxide,” Sensors and Actuators B, Vol. 26-27, pp. 93-96, 1995.
    [25] S. V. Manorama, N. Izu, W. Shin, “On the platinum sensitization of nanosized cerium dioxide oxygen sensors,” Sensors and Actuators B, Vol. 89, pp. 299-304, 2003.
    [26] H. Meixner, U. Lampe, “Metal oxide sensors,” Sensors and Actuators B, Vol. 33, pp. 198-202, 1996.
    [27] Y. Xu, X. Zhou, O. T. Sorensen, “Oxygen sensors based on semiconducting metal oxides: an overview,” Sensors and Actuators B, Vol. 65, pp. 2-4, 2000.
    [28] G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors,” Sensors and Actuators B, Vol. 23, pp. 103-109, 1995.
    [29]G. Sberveglieri, “Gas Sensors principles, operation and development,” Kluwer Academic Publishers, pp. 122, 1992.
    [30] S. M. Sze, “Semiconductor Sensor ,” Chap8, Proc 1994, pp. 399-402
    [31] A. Smith, J. M. Laurent, D. S. Smith and J. P. Bonnet, “Relation between solution chemistry and morphology of SnO2-based thin films deposited by a pyrosol process,” Thin Solid Film, Vol. 266, pp. 20-30, 1995.
    [32] S. Semancik, “Kinetically controlled chemical sensing using micro-machined structures,” Accounts Chem. Res. 31(5), pp. 279-287. 399-402, 1997.
    [33] Geeta Sanon, Raj Rup and Abhai Mansingh,” Growth and characterization of tin oxide films prepared by chemical vapour deposition ,“ Thin Solid Film, Vol.190, pp.287-301, 1990.
    [34] M. Di. Giulio, G. Micocci, A. Serra, A. Tepore, R. RELL and P. Sicilliano,” SnO2 thin films for gas sensor prepared by r.f. reactive sputtering ,“ Sensors and Actuators B, Vol. 24-25, pp. 465-468, 1995.
    [35] T. Moohida, K. Kikuchi. T. Kordo, H. Ueno and Yoshinobu, “Highly sensitive and selective H2S gas sensor from r.f. sputtered SnO2 thin film,” Sensors and Actuators B, Vol. 24-25, pp. 433-437, 1995.
    [36] J. L. Huang, D. W. Kuo, B. Y. Shew, Surfact and Coatings Technology, 79, pp.263, 1996
    [37] R. Rella. P. Siciliano, S. Capone, M. Epifani, L. Vasanelli, A. Licciulli, “Air quality monitoring by mean of sol-gel integrated tin oxide thin films,” Sensors and Actuators B, Vol.58 pp.283-288, 1999.
    [38] A. Smith, J. M. Laurent, D. S. Smith, and J. P. Bonnet, “ Experimental survey of different precursor/solvent pair for the deposition of tin dioxide by pyrosol,” Thin Solid Film, Vol.315, pp.17-21, 1998
    [39] J.Bruneaux, H. Cachet, M. Froment and A. Messad,” Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping,” Thin Solid Films, Vol. 197, pp.129-142, 1991.
    [40] C. Cobianu, C. Savaniu, O. Buiu, D. Dascalu, M. Zaharescu, C. Parlog, A. V. D. Berg and B. Pecz,” Tin dioxide sol-gel derived thin films deposited on porous silicon,” Sensors and Actuators B, Vol.43 pp.114-120, 1997.
    [41] D. J. Yoo, J. Tamaki, S. J. Park, N. Miura and N. Yamazoe, J. Am. Ceram. Soc, 79(8), 1996, 2201
    [42] J. P. Chatelon, C, Terrier, E. Bernstein, R. Berjoan and J. A. Roger,”Morphology of SnO2 thin films obtaibed by the sol-gel technique ,“ Thin Solid Films, Vol. 247, pp.162-168, 1991.
    [43] Y. Kobayashi, M. Okamoto and Tomita, J. Mater. Sci. 31, 1996, 6125.
    [44] A. E. D. Souza, A. H. Monteiro, C. V. Santilli and S. H. Pulcinelli, J. Mater. Sci- In Electro, 8, 1997,265.
    [45] A. Smith, J. M. Laurent, D. S. Smith and J. P. Bonnet and R. R. Clemente, “Relation between solution chemistry and morphology of SnO2-based thin film deposited by a pyrosol process,” Thin Solid Films, Vol. 266, pp20-30, 1995.
    [46] H. Iida, T. Mishuku, A. Ito and K. Kato, Solar Energy Materials, 17, 1988, 407
    [47] Isolde Simon “Micro-machined metal oxide gas sensor:opportunities to improve sensors performance,” Sensors and Actuators B, Vol.73 pp.1-26, 2001.
    [48] J. Sanz Maudes and T. Rodríguez,” Sprayed SnO2 films: Growth mechanism and film structure characterization,” Thin Solid Films. Vol.69, pp.183-189, 1980
    [49]G. Sberveglieri, Gas Sensors principles, operation and developments, Kluwer Academic Publishers, pp. 122, 1992.
    [50] Vladimir V.Kissine, “Oxygen flow effect on gas sensitivity properties of tin oxide film prepared by r.f sputtering,” Sensors and Actuators B, Vol. 55, pp. 55-59, 1999.
    [51] S.I. Rembeza , “Electrical resistivity and gas response mechanisms of nanocrystalline SnO2 films in a wide temperature range,” Phys. Stat. Sol. (a)179,147, 2000.
    [52] S. M. Sze, Semiconductor Sensors, John Wiley and Sons, pp. 388-396, 1994.
    [53] J. Ding, T. J. McAvoy, R. E. Cavicchi, S. Semancik, “Surface state trapping models for SnO2-based microhotplate sensors,” Sensors and Actuators B, Vol. 77, pp. 597-613, 2001.
    [54] J. Wateson, K. Ihokura, “The tin dioxide gas sensor,” Meas. Sci. Technol., Vol. 4, pp. 711-719, 1993.
    [55] I. Simon, N. Barson, Michael Bauer, Udo Weimar, “Micromachined metal oxide gas sensors: opportunities to improve sensor performance,” Sensors and Actuators B, Vol. 73, pp. 1-26, 1993.
    [56] C. Xu, Tamaki, N. Miura and Y. Yamazoe, “Grain size effect on gas sensitivity of porous SnO2-based element,” Sensors and Actuators B, Vol. 3, pp. 147 , 1991.
    [57] N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sensors and Actuators B, Vol. 5, pp. 7-19, 1991.
    [58] S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe, “Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors,” Japanese Journal of Applied Physics, Vol. 27, No.10, pp. 1798-1802, 1988.
    [59] N. Barsan, U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, Vol. 7, pp. 143-167, 2001.
    [60] L. E. Scriven, Mat. Res. Soc Symp. Proc. 121, pp.717-729, 1988
    [61] Q. Li, X. Yuan, G. Zeng and S. Xi, Mater. Chem. Phys., Vol. 47, pp.239, 1997

    下載圖示 校內:2025-08-30公開
    校外:2025-08-30公開
    QR CODE