簡易檢索 / 詳目顯示

研究生: 黃薇仰
Huang, Wei-Yang
論文名稱: 摻雜銪及釔對鎳酸鑭導電性質與熱電性質之影響
Effects of Europium and Yttrium Doping on the Electric and Thermoelectric Properties of LaNiO3
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 鎳酸鑭熱電材料溶膠-凝膠
外文關鍵詞: LaNiO3, Thermoelectric, sol-gel
相關次數: 點閱:96下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳酸鑭屬於無能隙之氧化物導體,雖然具有很高的電導,但因載子濃度過高,而使席貝克係數偏低。根據前人研究結果,鎳酸鑭的導帶寬度可藉由摻雜稀土元素或改變氧計量比予以調整:摻雜之離子半徑愈小,導帶寬度則愈窄,直至鎳酸鑭中氧的2p 價帶軌域與鎳離子的d 導帶軌域分離,出現能帶間隙;而氧空缺的增加亦有類似效果。因此可以藉由摻雜稀土元素或調控氧空缺來優化電導和席貝克係數,以提升功率因子。
    本研究企圖透過摻雜稀土元素銪及釔來調整鎳酸鑭的導電和熱電特性,而試片合成方法為溶膠-凝膠法,合成條件為大氣下、溫度800 oC、燒結時間24小時。根據成分及結構分析顯示,摻雜銪及釔之鎳酸鑭試片中皆有氧化鎳二次相析出,且析出量會隨著摻雜比例增加而增多。電性分析顯示,鎳酸鑭之電導確實因摻雜銪或釔而降低,此結果與預期相符,因為銪及釔的離子半徑皆比鑭小。但是熱電分析顯示,席貝克係數因摻雜銪及釔而隨之降低,與預期結果不符,原因可能與試樣中存在氧化鎳二次相有關。鎳酸鑭中主要電荷載子為電子,而氧化鎳為p 型半導體,其存在會造成雙載子效應,降低席貝克係數。所有試片所測之席貝克係數均為負值,約為-4 ~ -13 μV/K,這意指多數電荷載子仍為電子。本研究結果顯示,去除鎳酸鑭中的氧化鎳二次相是提升其熱電特性的關鍵。

    LaNiO3 (LNO) is an oxide conductor without a band gap. So, it has a very good electric conductivity, but its carrier concentration may be too high to have a large Seebeck coefficient. It was reported that the conduction band width of rare-earth (RE) nickelates decreases with the decrease of the RE ion size and in small RE nickelates, there was a separation between the conduction and valence bands. This provides some room for bandgap engineering to optimize the carrier concentration, so that a good trade-off may be achieved between the good electric conductivity and large Seebeck coefficient. So, in this study, Eu and Y substituted LNO samples were synthesized by the sol-gel method and their electric and thermoelectric properties were assessed. The results showed that it was very difficult to prepare the substituted LNO samples with a high phase purity and NiO was one of the secondary phases often observed in the samples. As expected, the partial substitution of La ions with smaller Eu or Y ions resulted in a reduction in the electric conductivity. However, against the expectation the Seebeck coefficient was also reduced by either Eu or Y substitutions. The cause may be ascribed to the secondary phase NiO observed in the samples, which is well known to be a p-type semiconductor. Because LNO itself has the n-type charge carriers, the dual-type charge carrier problem may eventually nulls the effect of the bandgap engineering. The result indicates that the crucial step in improving the thermoelectric property of the LNO based oxides is to eliminate the secondary phase of NiO.

    目錄 摘要 .................................................... I Extended Abstract ...................................... II 謝誌 .................................................... X 目錄 ................................................... XI 表目錄 ............................................... XIII 圖目錄 ................................................ XIV 第一章 緒論 ............................................. 1 1-1 前言 ................................................ 1 1-2 研究動機與目的 ...................................... 6 第二章 理論基礎與文獻回顧 ............................... 7 2-1 熱電效應理論基礎 .................................... 7 2-2 熱電材料的物理性質 ................................. 14 2-3 熱電轉換效率 ....................................... 18 2-4 材料介紹 ………..................................... 23 2-5 材料製備方法 ....................................... 30 第三章 實驗方法與步驟 .................................. 32 3-1 實驗步驟 ........................................... 32 3-2 起始藥物 ........................................... 34 3-3 性質分析及設備介紹 ................................. 35 第四章 結果與討論 ...................................... 51 4-1 La1-xEuxNiO3 (x=0~ 0.5) ............................ 51 4-2 La1-xYxNiO3 (x=0~ 0.5) ............................. 86 第五章 結論 ............................................ 97 參考文獻 ............................................... 99

    參考文獻
    1. M. Ohtaki. “Oxide thermoelectric materials for heat-to-electricity direct energy conversion.” Kyushu University Global COE Program Novel Carbon Resources Sciences Newsletter 3 (2010).
    2. Z. Bin, et al. “Research progress of oxides thermoelectric materials.” Journal of Inorganic Materials 29.3 (2014): 237-244.
    3. T. Caillat, et al. “Zn-Sb alloys for thermoelectric power generation.” Energy Conversion Engineering Conference, 1996. IECEC 96., Proceedings of the 31st Intersociety. Vol. 2. IEEE, 1996.
    4. T. J. Seebeck. “Ueber den magnetismus der galvanischen kette,” Abh. K. Akad. Wiss. Berlin, 289 (1821).
    5. T. J. Seebeck. “Magnetische polarisation der metalle und erze durch temperatur-differenz,” Abh. K. Akad. Wiss. Berlin, 265 (1823).
    6. T. J. Seebeck. “Methode, platinatiegel auf ihre chemische reinheit gurch thermo-magnetismus zu prufen,” Schweigger's J. Phys., 46, 101 (1826).
    7. J. H. Sharp, et al. “Kinetic analysis of thermogravimetric data.” Analytical Chemistry 41.14 (1969): 2060-2062.
    8. J. P. Heremans, et al. “Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of States.” Science 321.5888 (2008):554-557.
    9. K. P. Ghatak, et al. “Thermoelectric power in nano-structured materials.” Springer-Verlag Berlin An, 2013.
    10. C. Kittel. Introduction to Solid State Physics. Wiley, 2005.
    11. G. S. Nolas, et al. “Thermoelectrics: basic principles and new materials developments.” Vol. 45. Springer Science & Business Media, 2013.
    12. J. C. A. Peltier. “Nouvelles experiences sur la caloricite des courants electrique.” Ann. Chim. Phys 56.371 (1834): 371.
    13. K. Brazier [Online] (2008.)
    http://en.wikipedia.org/wiki/File:Thermoelectric_Cooler_Diagram.svg.
    14. W. Thomson. “XXXVI.—An account of carnot's theory of the motive power of heat;* with numerical results deduced from regnault's experiments on steam.” Earth and Environmental Science Transactions of the Royal Society of Edinburgh 16.5 (1849): 541-574.
    15. W. Thomson. “4. On a mechanical theory of thermoelectric currents.” Proceedings of the Royal society of Edinburgh 3 (1857): 91-98.
    16. W. Thomson. “Account of researches in thermoelectricity.” Proceedings of the Royal Society of London 7 (1854): 49-58.
    17. W. Thomson. “On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron.” Proceedings of the Royal Society of London 8 (1856): 546-550.
    18. 黃詣凱. “鉍銅硒氧與鉍銅硫氧摻雜鈷和鍶對熱電性質之影響.” 成功大學材料科學及工程學系學位論文 (2015): 13.
    19. T. Caillat, et al. “Preparation and thermoelectric properties of semiconducting Zn4Sb3.” Journal of Physics and Chemistry of Solids 58.7 (1997):1119-1125.
    20. D. C. Jiles. Introduction to the Electronic Properties of Materials. CRC Press, 2001.
    21. M. Fardy, et al. “Synthesis and thermoelectrical characterization of lead chalcogenide nanowires.” Advanced Materials 19.19 (2007): 3047-3051.
    22. J. F. Li, et al. “High-performance nanostructured thermoelectric materials.” NPG Asia Materials 2.4 (2010): 152-158.
    23. P. V. Gorskyi. "Power factor for layered thermoelectric materials with a closed fermi surface in a quantizing magnetic field." arXiv preprint arXiv:1304.8054 (2013).
    24. G. J. Snyder, et al. “Complex thermoelectric materials.” Nature Materials 7.2 (2008): 105-114.
    25. K. Fujita, et al. “High-temperature thermoelectric properties of NaxCoO2-δ single crystals.” Japanese Journal of Applied Physics 40.7R (2001): 4644.
    26. R. Funahashi, et al. “Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit.” Applied physics letters 81.8 (2002): 1459-1461.
    27. M. Shikano, et al. “Electrical and thermal properties of single crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure.” Applied Physics Letters 82.12 (2003): 1851-1853.
    28. M. Ito, et al. “Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method.” Scripta materialia 48.4 (2003): 403-408.
    29. D. Wang, et al. “High-temperature thermoelectrics properties of Ca3Co4O9+δ with Eu substitution.” Solid State Communications 129.9 (2004): 615-618.
    30. J. Androulakis, et al. “La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide.” Applied physics letters 84.7 (2004): 1099-1101.
    31. S. Ohta, et al. “Grain size dependence of thermoelectric performance of Nb doped SrTiO3 polycrystal.” Journal of the Ceramic Society of Japan 114.1325 (2006): 102-105.
    32. H. Ohta, et al. Giant thermoelectric Seebeck coefficient of a two dimensional electron gas in SrTiO3. Nature materials 6.2 (2007): 129.
    33. D. Berardan, et al. In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Communications 146.1 (2008): 97-101.
    34. L. Bocher, et al. CaMn1-xNbxO3 (x . 0.08) perovskite-type phases aspromising new high-temperature n-type thermoelectric materials.Inorganic chemistry 47.18 (2008): 8077-8085.
    35. M. Ohtaki, et al. High thermoelectric performance of dually doped ZnO ceramics. Journal of Electronic Materials 38.7 (2009): 1234-1238.
    36. N.V. Nong, et al. Improvement on the high temperature thermoelectric performance of Ga-doped misfit layered Ca3Co4-xGaxO9+. Journal of Alloys and Compounds 491.1 (2010): 53-56.
    37. J. R. Sun, et al. Crystal structure and electronic transport property of perovskite manganese oxides with a fixed tolerance factor. Applied Physics Letters 70.14 (1997): 1900-1902.
    38. S.B. Krupanidhi (n.d.). [Online]
    http://www.mrc.iisc.ac.in/perovskite-crystal-structure/
    39. J. B. Torrance, et al. Systematic study of insulator-metal transitions in perovskites RNiO3 (R= Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Physical Review B 45.14 (1992): 8209.
    40. T. Moriga, et al. Characterization of oxygen-deficient phases appearing in reduction of the perovskite-type LaNiO3 to La2Ni2O5. Solid State Ionics
    79 (1995): 252-255.
    41. R. D. Sanchez, et al. Metal-insulator transition in oxygen-deficient LaNiO3-x perovskites. Physical Review B 54.23 (1996): 16574.
    42. L. Qiao, et al. “Direct observation of Ni3+ and Ni2+ in correlated LaNiO3-δ films.” EPL (Europhysics Letters) 93.5 (2011): 57002.
    43. A. Tiwari, et al. “Low temperature electrical transport in La1-xNdxNiO3−δ.” Solid state Communications 121.6 (2002): 357-361.
    44. S. Pal, et al. “Transport and magnetic properties of metallic La1−xPbxNiO3−δ (0.0⩽ x⩽ 0.1).” Journal of Applied Physics 97.4 (2005): 043707.
    45. M. Zinkevich, et al. “Thermodynamic analysis of the ternary La-Ni-O system.” Journal of Alloys and Compounds 375.1 (2004): 147-161.
    46. A. L. Patterson. “The scherrer formula for X-ray particle size determination.” Phys. Rev., 56, 978 (1939).
    47. G. E. M. Jauncey. “The scattering of X-rays and Bragg's law.” Proc. Natl. Acad. Sci. U.S.A., 10, 57–60 (1924).
    48. 蕭俊龍. 鎳酸鑭和鉍銅硒氧的導電性質與熱電特性之研究. 成功大學材料科學及工程學系學位論文, 2015, 1-140.
    49. C. L. Hsiao, et al. “Sol–gel synthesis and characterisation of nanostructured LaNiO3-x for thermoelectric applications.” Science of Advanced Materials 6.7 (2014): 1406-1411.
    50. 謝宜峰, et al. 以奈米氧化鋅靶材製備高平坦度透明導電薄膜之研究. 2005. PhD Thesis.
    51. 林麗娟. “X 光繞射原理及其應用.” X 光材料分析技術與應用專題 (1994).
    52. 馮端. 固體物理學大辭典. 建宏書局有限公司, 1998.
    53. K. P. Rajeev, et al. “Low-temperature electronic properties of a normal conducting perovskite oxide (LaNiO3).” Solid State Communications 79.7 (1991): 591-595.
    54. N. Gayathri, et al. “Electronic conduction in LaNiO3-δ: the dependence on the oxygen stoichiometry.” Journal of Physics: Condensed Matter 10.6 (1998): 1323.
    55. R. Funahashi, et al. “High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide uni-couples.” Measurement Science and Technology 16.1 (2004): 70.

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE