| 研究生: |
李明翰 Lee, Ming-Han |
|---|---|
| 論文名稱: |
四輪獨立轉向與四輪獨立驅動載具之數學建模、控制器設計及實現 Mathematical Modeling, Control Design, and Real-time Implementation of Four-wheel-independent-steering and Four-wheel-independent-driving Vehicles |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 4WIS4WID 、駕駛系統 、模糊邏輯 、道路跟隨 、機器視覺 、倒車停車 、路邊停車 、滑動模式 、軌跡追蹤控制 、輪型機器人 |
| 外文關鍵詞: | 4WIS4WID, driving system, fuzzy logic, lane following, machine vision, parallel parking, reverse parking, sliding-mode, trajectory tracking control, wheeled mobile robot |
| 相關次數: | 點閱:152 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討四輪獨立轉向與獨立驅動輪型(4WIS4WID)機器人之數學建模、控制以及實現。首先,我們呈現機器人的運動模型與動態模型,不同於差動或車型輪型機器人,4WIS4WID機器人受到四個用於旋轉與四個用於驅動的馬達帶動,因此他的控制架構要有能力整合此四個獨立運作的輪子。第二,本論文提出此機器人的軌跡追蹤控制,其中包括非線性的運動控制器以及滑動模式、模糊滑動模式與適應性模糊滑動模式動態控制器。所有控制器的穩定性皆由李亞普諾夫穩定性理論來驗證。為了實現此控制架構,我們設計了一個4WIS4WID輪型機器人。除了使用電腦模擬,也透過即時實驗來展現此控制架構的可行性與效能。此外,我們展示了一個針對4WIS4WID載具包含自動與手動的駕駛系統。自動駕駛的部分包含了三個功能,道路跟隨、倒車停車與路邊停車,此三功能皆是透過機器視覺與模糊控制理論來完成。四個網路攝影機被安裝在載具上面來偵測地面上的線並且透過相關的控制技術對所有的伺服馬達下命令。雖然載具安裝了四個攝影機去偵測周遭圍,但還是視線上的死角並且視野不夠廣。因此,為了確保此機器人可以實現正確的動作,有必要整合視覺上的判斷與模糊控制。手動駕駛系統的設計是基於傳統汽車駕駛系統來開發,因此駕駛人能夠輕易地適應此手動駕駛系統。為了驗證此駕駛系統對於4WIS4WID機器人的可行性,我們進行了一系列在室內的即時實驗。
This dissertation mainly investigates the model, control, and applications of four-wheel-independent steering and four-wheel-independent driving (4WIS4WID) wheeled mobile robot (WMR). First, we propose the kinematic and dynamic model of the 4WIS4WID WMR. Different from the differential or car-like WMR, the 4WIS4WID WMR is controlled by four steering and four driving motors, so the control scheme should possess the ability to integrate and manipulate the four independent wheels. Second, a trajectory tracking control scheme is developed for the 4WIS4WID WMR, where the nonlinear kinematic controller and the sliding-mode dynamic control, fuzzy sliding-mode dynamic control, and adaptive fuzzy sliding-mode dynamic control are designed. All the stabilities of the kinematic and dynamic control algorithms are verified using the Lyapunov stability theory method. In order to realize the control scheme, we design and implement a 4WIS4WID WMR. In addition to using computer simulations, the real-time experiments demonstrate the feasibility and effectiveness of the proposed controllers. Furthermore, we reveal a driving system consisting of an autonomous and manual system for a 4WIS4WID vehicle. The autonomous driving system consists of three applications, lane following, reverse parking, and parallel parking, and is based on machine vision and fuzzy control theory to achieve. Four webcams are mounted on the vehicle to detect lines on the ground and by using related control technologies to command all the server motors. The webcams are installed on all sides of the 4WIS4WID vehicle for all around viewing, but the vehicle still has many blind spots and the view is not wide enough. Therefore, integrating judgements of vision with fuzzy control methods is necessary to make sure the 4WIS4WID vehicle can perform the correct motions. The manual driving system is designed based on the traditional car driving system so that people can easily adapt to it. In order to verify the feasibility of the driving system for the 4WIS4WID vehicle, a serious of indoor real-time experiments is conducted.
[1] A. Ailon and I. Zohar, “Control strategies for driving a group of nonholonomic kinematic mobile robots in formation along a time-parameterized path,” IEEE/ASME Trans. Mechatronics, 2012, vol. 17, no. 2, pp. 326–336, April 2012.
[2] G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based approach for mobile robot path tracking,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211–221, Apr. 2007.
[3] J. C. L. Barreto S., A. G. S. Conceição, C. E. T. Dórea, L. Martinez, and E. R. de Pieri, “Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 2, pp. 467–476, April 2014.
[4] I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, and A. Ollero, “Automatic design of fuzzy controllers for car-like autonomous robots,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 447–465, Aug. 2004.
[5] I. Baturone, F. J. Moreno-Velo, V. Blanco, and J. Ferruz, “Design of embedded DSP-based fuzzy controllers for autonomous mobile robots,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 928–936, Feb. 2008.
[6] A. Censi, A. Franchi, L. Marchionni and G. Oriolo, “Simultaneous calibration of odometry and sensor parameters for mobile robots,” IEEE Trans. Robot., vol. 29, no. 2, pp. 475–492, April 2013.
[7] Y.-H. Chang, C.-W. Chang, C.-L. Chen, and C.-W. Tao, “Fuzzy sliding-mode formation control for multirobot systems: Design and implementation,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 444–457, Apr. 2012.
[8] C.-L. Chen and M.-H. Chang, “Optimal design of fuzzy sliding-mode control: A comparative study,” Fuzzy Sets and Syst., vol. 93, pp. 37-48, 1998.
[9] C.-Y. Chen, T.-H. S. Li, and Y.-C. Yeh, “EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots,” Inf. Sci., vol. 179, no. 1-2, pp. 180–195, Jan. 2009.
[10] C.-C. Cheng and S.-H. Chien, “Adaptive sliding mode controller design based on T–S fuzzy system models,” Automatica, vol. 42, no. 6, pp. 1005–1010, June 2006.
[11] M. W. Choi, J. S. Park, B. S. Lee, and M. H. Lee, “The performance of independent wheels steering vehicle(4WS) applied Ackerman geometry,” in Int. Conf. Control, Automation and Systems, COEX, Seoul, Korea, Oct. 2008, pp. 197–202.
[12] D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Trans. Contr. Syst. Technol., vol. 12, no. 4, pp. 637–644, July 2004.
[13] L. Clavien, M. Lauria, and F. Michaud, “Instantaneous centre of rotation estimation of an omnidirectional mobile robot,” in Proc. IEEE Int. Conf. on Robot. and Autom., Anchorage, AK, United States, 2010, pp. 5435–5440.
[14] C. P. Connette, A. Pott, M. Hägele, and A. Verl, “Control of an pseudo-omnidirectional, non-holonomic, mobile robot based on an icm representation in spherical coordinates,” in Proc. IEEE Conf. Decision Control, Cancun, Mexico, Dec. 2008, pp. 4976 –4983.
[15] J. Dickmann, N. Appenrodt, J. Klappstein, H.-L. Bloecher, M. Muntzinger, A. Sailer, M. Hahn, and C. Brenk, “Making bertha see even more: radar contribution,” IEEE Access, vol. 3, pp. 1233-1247, 2015.
[16] A. Dietrich, T. Wimbock, A. Albu-Schaffer, and G. Hirzinger, “Reactive whole-body control: Dynamic mobile manipulation using a large number of actuated degrees of freedom,” IEEE Robot. Autom. Mag., vol. 19, no. 2, pp. 20–33, June 2012.
[17] A. Diosi, S. Segvic, A. Remazeilles, and F. Chaumette, “Experimental evaluation of autonomous driving based on visual memory and image based visual servoing,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 3, pp. 870–883, Sep. 2011.
[18] J. R. Domínguez, “Discrete-time modeling and control of induction motors by means of variational integrators and sliding modes—Part II: Control design,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6183–6193, Oct. 2015.
[19] X. Du and K. K. Tan, “Autonomous reverse parking system based on robust path generation and improved sliding mode control,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1225-1237, June 2015.
[20] R. O. Duda and R. E. Hart. “Use of the hough transform to detect lines and curves in pictures,” CACM, vol. 15, no. 1, pp. 11-15, January 1972.
[21] M. Egerstedt, X. Hu, and A. Stotsky, “Control of mobile platforms using a virtual vehicle approach,” IEEE Trans. Autom. Control, vol. 46, no. 11, pp. 1777–1782, Nov. 2001.
[22] Y. Fu, H. Li, and M. E. Kaye, “Hardware/software codesign for a fuzzy autonomous road-following system,” IEEE Trans. Syst., Man, and Cybern., Part C, vol. 40, no. 6, pp. 690–696, Nov. 2010.
[23] H. Fukushima, K. Muro, and F. Matsuno, “Sliding mode control for transformation to an inverted pendulum mode of a mobile robot with wheel-arms,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4257–4266, Jul. 2015.
[24] Google Self-Driving Car Project. [Online]. Available https://www.google.com.tw/?gws_rd=ssl#q=google+car, accessed Mar. 28, 2016.
[25] J. Han, D. Kim, M. Lee, and M. Sunwoo, “Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor,” IEEE Trans. Veh. Technol., vol. 61, no. 3, pp. 971–985, Mar. 2012.
[26] M.-Y. Hsiao, T.-H. S. Li, J.-Z. Lee, C.-H. Chao, and S.-H. Tsai, “Design of interval type-2 fuzzy sliding-mode controller,” Inf. Sci., vol. 178, no. 6, pp. 1686–1716, 2008.
[27] H. C. Huang, “A taguchi-based heterogeneous parallel metaheuristic ACO-PSO and its FPGA realization to optimal polar-space locomotion control of four-wheeled redundant mobile robots,” IEEE Trans. Ind. Informat., vol. 11, no. 4, pp. 915–922, Aug. 2015.
[28] H.-C. Huang, “SoPC-based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional mobile robots,” IEEE Trans. Ind. Informat., vol. 9, no. 4, pp. 1828–1835, Nov. 2013.
[29] C.-L. Hwang and L.-J. Chang, “Internet-based smart-space navigation of a car-like wheeled robot using fuzzy-neural adaptive control,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1271–1284, Oct. 2008. 68
[30] C.-L. Hwang and N.-W. Chang, “Fuzzy decentralized sliding-mode control of a car-like mobile robot in distributed sensor-network spaces,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 97–109, Feb. 2008.
[31] C.-L. Hwang, C.-L. Wu, “Trajectory tracking of a mobile robot with frictions and uncertainties using hierarchical sliding-mode under-actuated control,” IET Control Theory Appl., vol. 7, vol. 7, pp. 952–965, May 2013.
[32] G. Indiveri, “Swedish wheeled omnidirectional mobile robots: Kinematics analysis and control,” IEEE Trans. Robot., vol. 25, no. 1, pp. 164–171, Feb. 2009.
[33] J.-H. Jean and F.-L. Lian, “Robust visual servo control of a mobile robot for object tracking using shape parameters,” IEEE Trans. Control Syst. Technol., vol. 20, no. 6, pp. 1461–1472, Nov. 2012.
[34] E. Kayacan, E. Kayacan, H. Ramon, O. Kaynak and W. Saeys, “Towards agrobots: Trajectory control of an autonomous tractor using type-2 fuzzy logic controllers,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 1, pp. 287–298, Feb. 2015.
[35] D. Kim, W. Chung, and S. Park, “Practical motion planning for car-parking control in narrow environment,” IET Control Theory Appl., vol. 4, no. 1, pp. 129–139, Jan. 2010.
[36] H. Kim and B. K. Kim, “Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4771–4779, Sept. 2014.
[37] K. B. Kim and B. K. Kim, “Minimum-time trajectory for three-wheeled omnidirectional mobile robots following a bounded-curvature path with a referenced heading profile,” IEEE Trans. Robot., vol. 27, no. 4, pp. 800–808, Aug. 2011.
[38] C.-H. Ko, K.-Y. Young, Y.-C. Huang, and S. K. Agrawal, “Walk-assist robot: A novel approach to gain selection of a braking controller using differential flatness,” IEEE Trans. Cont. Syst. Technol., vol. 21, no. 6, pp. 2299-2305, Nov. 2013.
[39] H. Komurcugil, S. Ozdemir, I. Sefa, N. Altin, and O. Kukrer, “Sliding-mode control for single-phase grid-connected mboxLCL-Filtered VSI with double-band hysteresis scheme,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 864–873, Feb. 2016.
[40] T. L. Lam, H. Qian, and Y. Xu, “Omnidirectional steering interface and control for a four-wheel independent steering vehicle,” IEEE/ASME Trans. Mechatronics, vol. 15, no. 3, pp. 329–338, Jun. 2010.
[41] Q. Li, L. Chen, M. Li, S.-L. Shaw and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol., vol. 63, no. 2, pp. 540–555, 2014.
[42] Q. Li, N. Zheng, and H. Cheng, “Springrobot: A prototype autonomous vehicle and its algorithms for lane detection,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4, pp. 300–308, Dec. 2004.
[43] T.-H. S. Li, S.-J. Chang, and W. Tong, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 491–501, Aug. 2004.
[44] T.-H. S. Li, S.-J. Chang, and Y.-X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,” IEEE Trans. Ind. Electron., vol. 50, pp. 867–880, 2003.
[45] T.-H. S. Li, Y.-C. Yeh, J.-D. Wu, M.-Y. Hsiao, and C.-Y. Chen, “Multifunctional intelligent autonomous parking controllers for carlike mobile robots,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1687–1700, May 2010.
[46] C.-J. Lin, S.-M. Hsiao, Y.-H. Wang, C.-H. Yeh, C.-F. Huang, T.-H. S. Li, “Design and implementation of a 4WS4WD mobile robot and its control applications,” in Proc. IEEE Int. Conf. on Sys. Sci. and Eng., Budapest, Hungary, 2013, pp. 235–240.
[47] K.-Z. Liu, M. Q. Dao, and T. Inoue, “An exponentially ε-convergent control algorithm for chained systems and its application to automatic parking systems,” IEEE Trans. Control Syst. Technol., vol. 14, no. 6, pp. 1113–1126, Nov. 2006.
[48] C. B. Low and D. Wang “GPS-based tracking control for a car-like wheeled mobile robot with skidding and slipping,” IEEE/ASME Trans. Mechatronics, vol. 13, no. 4, pp. 480–484, Aug. 2008.
[49] M. Makatchev, S. Y. T. Lang, S. K. Tso, and J. J. McPhee, “Cross-coupling control for slippage minimization of a four-wheel-steering mobile robot,” in Proc. Int. Symposium on Robotics, Montreal, Canada, 2000, pp. 42-47.
[50] L. Marín, M. Vallés, A. Soriano, Á. Valera and P. Albertos, “Event-based localization in ackermann steering limited resource mobile robots,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1171–1182, Aug. 2014.
[51] O. Mohareri, R. Dhaouadi, and A. B. Rad, “Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks,” Neurocomputing, vol. 88, pp. 54–66, Oct. 2012.
[52] J. Morales, J. L. Martínez, A. Mandow, A. J. García-Cerezo and S. Pedraza, “Power consumption modeling of skid-steer tracked mobile robots on rigid terrain,” IEEE Trans. Robot., vol. 25, no. 5, pp. 1098–1108, Oct. 2009.
[53] F. Plestan, Y. Shtessel , V. Brégeault and A. Poznyak “New methodologies for adaptive sliding mode control,” Int. J. Control, vol. 83, no. 9, pp. 1907–1919, Aug. 2010.
[54] J. Ploeg, A. C. M. van der Knaap, and D. J. Verburg, “ATS/AGV-design, implementation and evaluation of a high performance AGV,” in Proc. IEEE Intell. Veh. Symp., 2002, 1, pp. 127–134.
[55] H. Qian, T. L. Lam, W. Li, C. Xia, and Y. Xu, “System and design of an omni-directional vehicle,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Bangkok, Thailand, 2009, pp. 389–394.
[56] B. Ranjbar-Sahraei, F. Shabaninia, A. Nemati, and S. Stan, “A novel robust decentralized adaptive fuzzy control for swarm formation of multi-agent systems,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3124–3134, Aug. 2012.
[57] M. Rubagotti, M. L. Della Vedova, and A. Ferrara, “Time-optimal sliding-mode control of a mobile robot in a dynamic environment,” IET Control Theory Appl., vol. 5, no. 16, pp. 1916–1924, Nov. 2011.
[58] U. Ruiz, R. Murrieta-Cid and J. L. Marroquin, “Time-optimal motion strategies for capturing an omnidirectional evader using a differential drive robot,” IEEE Trans. Robot., vol. 29, no. 5, pp. 1180–1196, Oct. 2013.
[59] M. Schreier, V. Willert, and J. Adamy, “Compact representation of dynamic driving environments for ADAS by parametric free space and dynamic object maps,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 367–384, Feb. 2016.
[60] M. F. Selekwa and J. R. Nistler, “Path tracking control of four wheel independently steered ground robotic vehicles,” in Proc. 50th Int. Conf. Decision and Control and European Control Conference, Orlando, FL, USA, Dec. 2011, pp. 6355-6360.
[61] J. J. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ, USA: Prentice-Hall, 1991.
[62] H. Takahashi, H. Nishi, and K. Ohnishi, “Autonomous decentralized control for formation of multiple mobile robots considering ability of robot,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 1272–1279, Dec. 2004.
[63] S. G. Tzafestas and G. G. Regatos, “A simple robust sliding-mode fuzzy-logic controller of the diagonal type,” J. Intell. Robot. Syst., vol. 26, pp. 353-388, 1999.
[64] H. Vorobieva, S. Glaser, N. Minoiu-Enache, and S. Mammar, “Automatic parallel parking in tiny spots: path planning and control,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 396-410, Feb. 2015.
[65] J. Wang, A. B. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding mode control. Part 1-fuzzy switching,” Fuzzy Sets Syst., vol. 122, no. 1, pp. 21–30, Aug. 2001.
[66] T. Wang, H. Gao, and J. Qiu, “A combined adaptive neural network and nonlinear model predictive control for multirate networked Industrial Process Control,” IEEE Trans. Neural Netw., vol. 27, no. 2, pp. 416–425, Feb. 2016.
[67] T. Wang, H. Gao, and J. Qiu, “A combined fault-tolerant and predictive control for network-based industrial processes,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2529–2536, April 2016.
[68] T. Wang, Y. Zhang, J. Qiu, and H. Gao “Adaptive fuzzy backstepping control for a class of nonlinear systems with sampled and delayed measurements,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 302-312, April 2015.
[69] W. S. Wijesoma, K. R. S. Kodagoda, and A. P. Balasuriya, “Road-boundary detection and tracking using ladar sensing,” IEEE Trans. Robot. Autom., vol. 20, no. 3, pp. 456–464, Jun. 2004.
[70] J.-M. Yang, and J.-H. Kim, “Sliding mode control for trajectory of nonholonomic wheeled mobile robots,” IEEE Trans. Robot. Autom., vol. 15, no. 3, pp. 578–587, Jun. 1999.
[71] S. X. Yang, A. Zhu, G. Yuan, and M. Q.-H. Meng, “A bioinspired neurodynamics-based approach to tracking control of mobile robots,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3211–3220, Aug. 2012.
[72] Y.-C. Yeh, T.-H. S. Li, and C.-Y. Chen, “Adaptive fuzzy sliding-mode control of dynamic model based car-like mobile robot,” Int. Jour. of Fuzzy Syst., vol. 11, no. 4, pp. 272–286, Dec. 2009.
[73] J. Yi, “A piezo-sensor-based “smart tire” system for mobile robots and vehicles,” IEEE/ASME Trans. Mechatronics, vol. 13, no. 1, pp. 95–103, Feb. 2008.
[74] J. Yi, H. Wang, J. Zhang, D. Song, S. Jayasuriya, J. Liu, “Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation,” IEEE Trans. Robot., vol. 25, no. 5, pp. 1087–1097, Oct. 2009.
[75] B. Yoo, and W. Ham, “Adaptive fuzzy sliding mode control of nonlinear system,” IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 315–321, May 1998.
[76] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965.
[77] Q. Zhang, L. Lapierre, and X. Xiang, “Distributed control of coordinated path tracking for networked nonholonomic mobile vehicles,” IEEE Trans. Industrial Informatics, vol. 9, no. 1, pp. 472–484, Feb. 2013.
[78] J. Zhao, T. Zhao, N. Xi, M. W. Mutka and L. Xiao, “MSU tailbot: Controlling aerial maneuver of a miniature-tailed jumping robot,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 6, pp. 2903–2914, Dec. 2015.