簡易檢索 / 詳目顯示

研究生: 陳佳勳
Chen, Chia-Hsun
論文名稱: 氣相冷凝法製作氧化鋅p-i-n紫外線偵測器
Ultraviolet Photodetectors of p-GaN/i-ZnO/ n-ZnO:Al Using Vapor Cooling Condensation Technique
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 49
中文關鍵詞: 紫外線偵測器氧化鋅
外文關鍵詞: ZnO, UV photodetector
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二六族半導體氧化鋅 (ZnO)是橫截面六方晶系的纖維鋅礦(wurtzite) 結構。由於氧化鋅為一具有寬能隙直接能隙半導體。近年來愈來愈多氧化鋅應用於光電元件上,用氧化鋅材料已被用於製作藍光/紫外光發光二極體 (blue/ultraviolet light-emitting diodes),敝論文應用氧化鋅材料製作紫外線偵測器 (ultraviolet photodetectors)。目前成長氧化鋅材料的方法有真空濺鍍 (sputtering)、分子束磊晶 (Molecular Beam Epitaxy)、有機金屬化學氣相沉積 (Metal Organic Chemical Vapor Deposition)。敝論文利用氣相冷凝法成長高品質低缺陷i-ZnO製作p-i-n (p-GaN/i-ZnO/n-ZnO:Al)結構紫外線偵測器,此異質結構之紫外線偵測器在逆偏壓5 V時,有低的漏電流約6.3 pA和高的紫外線(360 nm)-可見光(400 nm)拒斥比約兩個數量級以上。在無外加偏壓和其他背景光下,量測出此元件有極大的動態電阻值 (dynamic resistance)使得元件有極小的熱雜訊強度密度(thermal noise power density about) 大約為8.68×10-33 A2/Hz。在有逆偏壓下,元件以1/f型式展現出來,此時元件之雜訊強度密度約為4.89×10-26 A2/Hz,此低的雜訊強度密度使得元件有高的偵測度大約為1.66×1011 cmHz1/2W-1。

    Zinc oxide is an II-VI semiconductor, which belongs to the wurtzite hexagonal structure. ZnO is one of the most attractive semiconductor materials for photonic and electronic applications. It has been studied as the blue/ultraviolet light-emitting diodes due to its properties of wide bandgap of 3.37 eV, large exciton binding energy of 60 meV. Moreover, applications of the ZnO ultraviolet photodetectors have been intensively developed due to its simple fabrication and lower cost. In general, ZnO films have been grown by sputtering, Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD). In this study, a novel vapor cooling condensation technique was used to deposit high quality i-ZnO films and to fabricate resulted p-GaN/i-ZnO/n-ZnO:Al (p-i-n) UV photodetectors. The heterostructed p-i-n photodetectors biased at a -5 V had a low dark current 6.3 pA and a high ultraviolet (360 nm)-visible (400 nm) rejection ratio of 5.04102. Without applied bias and external photo flux, the large dynamic resistance ensured low thermal noise power density about 8.68×10-33 A2/Hz. With 5 V reverse bias, the low noise power density exhibits a 1/f-type behavior about 4.89×10-26 A2/Hz and the high detectivity of 1.66×1011 cm Hz1/2W-1 was achieved.

    Content 中文摘要 II Abstract III Acknowledgements V Content VI Figures Captions IX Table Captions XI Chapter 1 Introduction 1 1.1. Introduction 1 1.2. Organization of this dissertation 4 Chapter 2 Background Theory 6 2.1. Theory of photodetectors 6 2.1.1. Operation principle 6 2.2. Theoretical analysis of the p-i-n photodetector 7 2.2.1 Responsivity and quantum efficiency theory 7 2.2.2 Responsivity and quantum efficiency calculate 8 2.3. Introduction of low frequency noise 10 2.3.1. Theory of low frequency noise 11 2.3.1.1. Johnson-Nyquist noise of low frequency noise 12 2.3.1.2. Flicker noise 13 Chapter 3 Fabrication of the devices 18 3.1. Vapor cooling condensation method 18 3.1.1. Review of vapor cooling condensation method 18 3.1.2. Vapor cooling condensation method in this experiment 19 3.2. p-i-n nanostructure heterojunction fabrication process 19 Chapter 4 Measurement and Results 30 4.1. Photoluminescence characterization of ZnO p-i-n photodetectors 30 4.2 Current-voltage characterization of ZnO p-i-n photodetector 30 4.2.1 Darkcurrent and dynamic resistance of ZnO p-i-n photodetector 30 4.2.2 Spectral photoresponsivity characterization of ZnO p-i-n photodetectors 31 4.2.3 Spectral external quantum efficiency characterization of ZnO p-i-n photodetector 32 4.3 Noise measurement results of ZnO p-i-n photodetector 32 4.3.1 The Johnson-Nyquist noise measurement results of ZnO p-i-n photodetector 32 4.3.2 The flicker noise measurement results of ZnO p-i-n photodetector 33 Chapter 5 Conclusion 42 References 44 Figures Captions Figure 1.1 Application for UV photodetectors: (a) UV astronomy, (b) solar blind detector, (c) flame detection and engine monitoring, (d) underwater UV communications, (e) chemical/biological battlefield reagent detector, (f) space communications secure from Earth 5 Figure 2.1 Processes of intrinsic photoexcitation from band to band, and extrinsic photoexcitation between impurity level and band. 15 Figure 2.2 Operation of p-i-n photodetector. (a) Cross-sectional view of p-i-n photodetector. (b) Energy-band diagram under reverse bias. (c) Carrier generation characteristics. 16 Figure 2.3 Schematic illustration of the responsivity of ideal and real photodetectors. 17 Figure 3.1 Inert-gas evaporation nanoparticles deposition system 24 Figure 3.2 Equipment setup of vapor cooling condensation evaporation system 25 Figure 3.3 Rising temperature condition 26 Figure 3.4 A schematic process for p-i-n heterostructure 29 Figure 4.1 The room temperature PL spectrum of the i-ZnO film. 35 Figure 4.2 Current-voltage characteristics and dynamic resistance of p-GaN/i-ZnO/n-ZnO:Al photodetectors. 36 Figure 4.3 The spectral photoesponsivity of p-GaN/i-ZnO/n-ZnO:Al photodetectors. 37 Figure 4.4 The spectral external quantum efficiency of p-GaN/i-ZnO/n-ZnO:Al photodetectors. 39 Figure 4.5 Noise power density measured as a function of frequency for different bias voltage. 41 Table Captions Table 2.1 Typical values of gain for common photodetectors 15 Table 4.1 The UV(360 nm)-VIS(400 nm) rejection ratio of p-GaN/i-ZnO/n-ZnO:Al photodetectors. 38 Table 4.2 The peak external quantum efficiency(%) at 360 nm of p-GaN/i-ZnO/n-ZnO:Al photodetectors. 40

    Chapter 1
    [1] M. Razeghi and A. Rogalski, "Semiconductor ultraviolet detectors," Journal of Applied Physics, vol. 79, pp. 7433-7473, 1996.
    [2] M. P. Ulmer, M. Razeghi, and E. Bigan, "Ultraviolet detectors for astrophysics: present and future," Optoelectronic Integrated Circuit Materials, Physics and Devices, San Jose, CA, USA, pp. 210-217, 1995.
    [3] F. Omnes, F. Calle and E. Monroy, "Wide-bandgap semiconductor ultraviolet photodetector," Semiconductor Science Technology, vol. 18, 2003.
    [4] T. Tut, T. Yelboga, E. Ulker, and E. Ozbay, "Solar-blind AlGaN-based p-i-n photodetectors with high breakdown voltage and detectivity," Applied Physics Letters, vol. 92, pp. 103502-3, 2008.
    [5] E. J. Tarsa, P. Kozodoy, J. Ibbetson, B. P. Keller, G. Parish, and U. Mishra, "Solar-blind AlGaN-based inverted heterostructure photodiodes," Applied Physics Letters, vol. 77, pp. 316-318, 2000.
    [6] R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, "High quantum efficiency AlGaN solar-blind p-i-n photodiodes," Applied Physics Letters, vol. 84, pp. 1248-1250, 2004.
    [7] D. J. H. Lambert, M. M. Wong, U. Chowdhury, C. Collins, T. Li, H. K. Kwon, B. S. Shelton, T. G. Zhu, J. C. Campbell, and R. D. Dupuis, "Back illuminated AlGaN solar-blind photodetectors," Applied Physics Letters, vol. 77, pp. 1900-1902, 2000.
    [8] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, "Improved solar-blind detectivity using an AlxGa1 - xN heterojunction p-i-n photodiode," Applied Physics Letters, vol. 80, pp. 3754-3756, 2002.
    [9] W. A. Wohlmuth, J. W. Seo, P. Fay, C. Caneau, and I. Adesida, "A high-speed ITO-InAlAs-InGaAs Schottky-barrier photodetector," Photonics Technology Letters, IEEE, vol. 9, pp. 1388-1390, 1997.
    [10] A. Osinsky, S. Gangopadhyay, B. W. Lim, M. Z. Anwar, M. A. Khan, D. V. Kuksenkov, and H. Temkin, "Schottky barrier photodetectors based on AlGaN," Applied Physics Letters, vol. 72, pp. 742-744, 1998.
    [11] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, "GaN Schottky barrier photodetectors with a low-temperature GaN cap layer," Applied Physics Letters, vol. 82, pp. 2913-2915, 2003.
    [12] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, "Schottky barrier photodetector based on Mg-doped p-type GaN films," Applied Physics Letters, vol. 63, pp. 2455-2456, 1993.
    [13] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, "Schottky barrier detectors on GaN for visible-blind ultraviolet detection," Applied Physics Letters, vol. 70, pp. 2277-2279, 1997.
    [14] J. K. Kim, H. W. Jang, C. M. Jeon, and J.L. Lee, "GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky contact," Applied Physics Letters, vol. 81, pp. 4655-4657, 2002.
    [15] S. J. Young, L. W. Ji, T. H. Fang, S. J. Chang, Y. K. Su, and X. L. Du, "ZnO ultraviolet photodiodes with Pd contact electrodes," Acta Materialia, vol. 55, pp. 329-333, 2007.
    [16] J. C. Carrano, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, "Very low dark current metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN epitaxial layers," Applied Physics Letters, vol. 70, pp. 1992-1994, 1997.
    [17] E. Monroy, F. Calle, E. Munoz, and F. Omnes, "AlGaN metal-semiconductor-metal photodiodes," Applied Physics Letters, vol. 74, pp. 3401-3403, 1999.
    [18] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, "Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN," Journal of Applied Physics, vol. 83, pp. 6148-6160, 1998.
    [19] J. C. Carrano, T. Li, D. L. Brown, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, "Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN," Applied Physics Letters, vol. 73, pp. 2405-2407, 1998.
    [20] H. W. Ruegg, "An optimized avalanche photodiode," Electron Devices, IEEE Transactions on, vol. 14, pp. 239-251, 1967.
    [21] H. Kanbe, N. Susa, H. Nakagome, and A. Hiroaki, "InGaAs avalanche photodiode with InP p-n junction," Electronics Letters, vol. 16, pp. 163-165, 1980.
    [22] A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, "High gain-bandwidth-product silicon heterointerface photodetector," Applied Physics Letters, vol. 70, pp. 303-305, 1997.
    [23] C. Lenox, P. Yuan, H. Nie, O. Baklenov, C. Hansing, J. C. Campbell, J. A. L. Holmes, and B. G. Streetman, "Thin multiplication region InAlAs homojunction avalanche photodiodes," Applied Physics Letters, vol. 73, pp. 783-784, 1998.
    [24] R. Kuchibhotla, A. Srinivasan, J. C. Campbell, C. Lei, D. G. Deppe, Y. S. He, and B. G. Streetman, "Low-voltage high-gain resonant-cavity avalanche photodiode," Photonics Technology Letters, IEEE, vol. 3, pp. 354-356, 1991.
    [25] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans, "GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition," Applied Physics Letters, vol. 89, pp. 011112-3, 2006.
    [26] H. H ahn, R. Juza, " Über die Kristallstrukturen von Cu3N, GaN und InN Metallamide und Metallnitride," Zeitschrift fur anorganische und allgemeine Chemie, vol. 239, pp. 282-287, 1938.
    [27] V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva, and E. Vavrinsky, "Influence of sputtering parameters on crystalline structure of ZnO thin films," Thin Solid Films, vol. 515, pp. 8756-8760, 2007.
    [28] R. Hong, H. Qi, J. Huang, H. He, Z. Fan, and J. Shao, "Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films," Thin Solid Films, vol. 473, pp. 58-62, 2005.
    [29] J. Lim, K. Shin, H. Woo Kim, and C. Lee, "Photoluminescence studies of ZnO thin films grown by atomic layer epitaxy," Journal of Luminescence, vol. 109, pp. 181-185, 2004.
    [30] S. Bethke, H. Pan, and B. W. Wessels, "Luminescence of heteroepitaxial zinc oxide," Applied Physics Letters, vol. 52, pp. 138-140, 1988.
    [31] B. J. Pierce and R. L. Hengehold, "Depth-resolved cathodoluminescence of ion-implanted layers in zinc oxide," Journal of Applied Physics, vol. 47, pp. 644-651, 1976.
    [32] R. Dingle, "Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide," Physical Review Letters, vol. 23, p. 579, 1969.
    [33] S. A. Studenikin, N. Golego, and M. Cocivera, "Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis," Journal of Applied Physics, vol. 84, pp. 2287-2294, 1998.
    [34] B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," Journal of Applied Physics, vol. 99, pp. 073516-6, 2006.
    [35] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, "Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature," Solid State Communications, vol. 103, pp. 459-463, 1997.
    [36] S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, "Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn," Applied Physics Letters, vol. 75, pp. 2761-2763, 1999.
    [37] V. Srikant and D. R. Clarke, "On the optical band gap of zinc oxide," Journal of Applied Physics, vol. 83, pp. 5447-5451, 1998.
    [38] Z. Fu, B. Lin, and J. Zu, "Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition," Thin Solid Films, vol. 402, pp. 302-306, 2002.
    [39] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, and G. Shimaoka, "Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation," Applied Surface Science, vol. 142, pp. 233-236, 1999.
    [40] W. Water and S.Y. Chu, "Physical and structural properties of ZnO sputtered films," Materials Letters, vol. 55, pp. 67-72, 2002.
    [41] C. Shi, Z. Fu, C. Guo, X. Ye, Y. Wei, J. Deng, J. Shi, and G. Zhang, "UV luminescence and spectral properties of ZnO films deposited on Si substrates," Journal of Electron Spectroscopy and Related Phenomena, vol. 101-103, pp. 629-632, 1999.
    [42] P.T. Hsieh, Y.C. Chen, K.S. Kao, and C.M. Wang, "Structural and luminescent characteristics of non-stoichiometric ZnO films by various sputtering and annealing temperatures," Physica B: Condensed Matter, vol. 403, pp. 178-183, 2008.
    [43] R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau, K. A. Jones, and A. A. Iliadis, "High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for III-V nitrides," Applied Physics Letters, vol. 70, pp. 2735-2737, 1997.
    [44] D. G. Baik and S. M. Cho, "Application of sol-gel derived films for ZnO/n-Si junction solar cells," Thin Solid Films, vol. 354, pp. 227-231, 1999.
    [45] S.Y. Kuo, W.C. Chen, and C.P. Cheng, "Investigation of annealing-treatment on the optical and electrical properties of sol-gel-derived zinc oxide thin films," Superlattices and Microstructures, vol. 39, pp. 162-170, 2006.
    [46] H.M. Cheng, H.C. Hsu, S.L. Chen, W.T. Wu, C.C. Kao, L.J. Lin, and W.F. Hsieh, "Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol-gel method," Journal of Crystal Growth, vol. 277, pp. 192-199, 2005.
    [47] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tetsuhiro, S. Fujita, and S. Fujita, "Effects of oxygen plasma condition on MBE growth of ZnO," Journal of Crystal Growth, vol. 209, pp. 522-525, 2000.
    Chapter 2
    [48] W. W. Gartner, "Depletion-layer photoeffects in semiconductors," Physical Review, vol. 116, p. 84, 1959.
    [49] F. N. Hooge, "1/f noise sources," Electron Devices, IEEE Transactions on, vol. 41, pp. 1926-1935, 1994.
    [50] C. Surya, N. S. Him, E. R. Brown, and P. A. Maki, "Spectral and random telegraph noise characterizations of low-frequency fluctuations in GaAs/Al0.4Ga0.6 As resonant tunneling diodes," Electron Devices, IEEE Transactions on, vol. 41, pp. 2016-2022, 1994.
    [51] P. Dutta and P. M. Horn, "Low-frequency fluctuations in solids: 1/f noise," Reviews of Modern Physics, vol. 53, p. 497, 1981.
    [52] C. Jimmin, A. A. Abidi, and C. R. Viswanathan, "Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures," Electron Devices, IEEE Transactions on, vol. 41, pp. 1965-1971, 1994.
    [53] D. M. Fleetwood, T. L. Meisenheimer, and J. H. Scofield, "1/f noise and radiation effects in MOS devices," Electron Devices, IEEE Transactions on, vol. 41, pp. 1953-1964, 1994.
    [54] K. K. Ng, S. M. Sze, "Physics of semiconductor devices," John Wiley & Sons, Inc, 2007.
    [55] L. Ting, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Durpuis, and J. C. Campbell, "Low-noise back-illuminated AlxGa1-xN based p-i-n solar-blind ultraviolet photodetectors," Quantum Electronics, IEEE Journal of, vol. 37, pp. 538-545, 2001.
    [56] D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, "Solar-blind AlGaN photodiodes with very low cutoff wavelength," Applied Physics Letters, vol. 76, pp. 403-405, 2000.
    [57] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, "Low-frequency noise and performance of GaN p-n junction photodetectors," Journal of Applied Physics, vol. 83, pp. 2142-2146, 1998.
    [58] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, "Origin of conductivity and low-frequency noise in reverse-biased GaN p-n junction," Applied Physics Letters, vol. 72, pp. 1365-1367, 1998.
    [59] F. N. Hooge, "1/f noise is no surface effect," Physics Letters A, vol. 29, pp. 139-140, 1969.
    [60] A. Ziel., "Fluctuation phenomena in semiconductors," New York :Academic, 1959.
    [61] S. J. Chang . C. K. Wang , Y. K. Su , Y. Z. Chiou, T. K. Lin, H. L. Liu and J. J. Tang, "High detectivity GaN metal–semiconductor–metal UV photodetectors with transparent tungsten electrodes," Semiconductor Science and Technology vol. 20, 2005.
    [62] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, "Low noise p-i-n GaN ultraviolet photodetectors," Applied Physics Letters, vol. 71, pp. 2334-2336, 1997.
    Chapter 3
    [63] S Kasukabe, S Yatsuya, R Uyeda, "Ultrafine metal particles formed by Gas-Evaporation Technique. II. Crystal Habits of Magnesium, Manganese, Beryllium and Tellurium," Japanese Journal Applied Physics, vol. 13, pp. 1714-1721, 1974.
    [64] N. Wada, "Preparation of Fine Metal Particles by Means of Evaporation in Helium Gas," Japanese Journal Applied Physics, vol. 6, pp. 553-556, 1967.
    [65] C. Kaito, "Coalescence Growth of Smoke Particles Prepared by a Gas-Evaporation Technique," Japanese Journal Applied Physics , vol. 17, pp. 601-609,1978.
    [66] N. Wada, "Preparation of Fine Metal Particles by Means of Evaporation in Xenon Gas," Japanese Journal Applied Physics, vol. 7, pp. 1287-1293, 1968.
    [67] S. T. Ohno, S. Yatsuya, R. Uyeda, "Formation of Ultrafine Metal Particles by Gas-Evaporation Technique. III. Al in He, Ar and Xe, and Mg in Mixtures of Inactive Gas and Air," Japanese Journal Applied Physics, vol. 15, pp. 1213-1217, 1976.
    [68] S Kasukabe, S Yatsuya, R Uyeda, "Ultrafine metal particles formed by Gas-Evaporation Technique. II. Crystal Habits of Magnesium, Manganese, Beryllium and Tellurium," Japanese Journal Applied Physics, vol. 13, pp. 1714-1721, 1974.
    [69] S. K. a. R. U. Shigeki Yatsuya, "Formation of ultrafine metal particles by gas evaporation technique. I. Aluminium in Helium," Japanese Journal Applied Physics, vol. 12, pp.1675-1684, 1973.
    Chapter 4
    [70] D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, "Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE," Journal of Crystal Growth, vol. 184-185, pp. 605-609, 1998.

    無法下載圖示 校內:2019-06-30公開
    校外:2029-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE