簡易檢索 / 詳目顯示

研究生: 郭泓廷
Kuo, Hung-Ting
論文名稱: 用於3D視訊廣播即時立體匹配及彩圖置中景深包裝之VLSI實現
VLSI Implementation of Real-Time Stereo Matching and Centralized Texture Depth Packing for 3D Video Broadcasting
指導教授: 劉濱達
Liu, Bin-Da
共同指導教授: 楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 63
中文關鍵詞: 彩圖置中景深包裝視差現場可程式邏輯閘陣列立體匹配
外文關鍵詞: CTDP, disparity, filed programmable gate array (FPGA), stereo matching
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出用於優化視差之立體匹配法以及彩圖置中景深包裝格式處理的完整系統。在立體匹配模組中,使用了基於深度資訊可靠性的優化演算法和基於彩圖資訊左右一致性的偵測法,以增進深度圖的準確度。此外,於彩圖置中景深包裝格式處理模組中,使用了蘭克斯濾波器將彩圖及深度圖包裝於可兼容二維圖像以應用於三維視訊廣播。為加速處理速度,本論文亦提出了立體匹配法和彩圖置中景深包裝格式的超大型積體電路硬體架構,並經高畫質多媒體介面,在FPGA板完成系統實現。
    本論文所提出的立體匹配法和彩圖置中景深包裝格式處理模組,以超大型積體電路所實現的最高操作頻率在每秒60張畫面時分別為192.3 MHz及244.38 MHz;此兩模組皆可以支援即時輸出Full HD之包裝格式影片。

    In this thesis, stereo matching process with disparity refinement methods and the centralized texture depth packing (CTDP) format processor are proposed. In order to improve the accuracy of depth maps, the disparity refinement methods with depth-reliability-based refinement algorithms and texture-based left-right consistency check (LRC) strategies are utilized in stereo matching module. In addition, the proposed CTDP module packs the texture view and depth map into a 2D-compatibale view with Lanczos down-sampling filters for the 3D video broadcasting. In order to accelerate the operational speed, the VLSI architectures with the proposed stereo matching and CTDP format processes are proposed and implemented on Altera FPGA platform through HDMI standard interfaces. Simulations show that the VLSI implementations of the proposed stereo matching processor and CTDP formatter can operate at maximum 192.3 MHz and 244.38 clock rates at 60 frames per second, respectively to support the packed Full HD videos in real-time.

    Abstract (Chinese) i Abstract (English) iii Acknowledgement v Table of Contents vii List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Background and Review 4 2.1 Concept of Stereopsis 4 2.2 Fundamental Theorem of Stereo Matching 5 2.3 Flow Chart of Local Stereo Matching 7 2.3.1 Matching Cost Computation 7 2.3.2 Cost Aggregation 9 2.3.3 Disparity Decision 12 2.3.4 Disparity Refinement 13 2.4 Centralized Texture Depth Packing and De-packing Formats 13 Chapter 3 The Proposed Stereo Matching Process and CTDP Packing System 17 3.1 Overview of the Overall System 18 3.2 Proposed Stereo Matching Process 18 3.2.1 Raw Matching Cost Generation by Color Similarity 20 3.2.2 Vertical and Horizontal Iterative Aggregation 20 3.2.3 Proposed Disparity Refinement Method 22 3.2.4 Depth Map Refinement 24 3.3 Texture-11/12 CTDP Horizontal Packing System 28 3.4 VLSI Implementation of the Proposed System 35 Chapter 4 Experimental Results and Discussion 41 4.1 Experimental Environment and Settings 41 4.2 Performance of Stereo Matching 47 4.3 Performance of Texture-11/12 CTDP Horizontal Packing Formatter 54 Chapter 5 Conclusion and Future Work 56 5.1 Conclusion 56 5.2 Future Work 57 References 59

    [1] C. Fehn, K. Hopf, and B. Quante, “Key technologies for an advanced 3D TV system,” Proc. SPIE, Three-dimentional TV, Video, and Display III, vol. 5599, pp. 66–80, Dec. 2004.
    [2] C. Fehn, R. De La Barré, and S. Pastoor, “Interactive 3-DTV-concepts and key technologies,” Proc. IEEE, vol. 94, pp. 524–538, Mar. 2006.
    [3] J. F. Yang, H. M. Wang, and A. T. Chiang, “2D backwards compatible centralized color-depth packing,” Joint Collaborative Team on 3D Video Coding Extensions of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, the 6th Meeting: Document: JCT3V-F0087, Geneva, Switzerland, Nov. 2013.
    [4] A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Int. J. Comput. Vis., vol. 33, pp. 181–200, Sep. 1999.
    [5] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 1222–1239, Nov. 2001.
    [6] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation for early vision,” Int. J. Comput. Vis., vol. 70, pp. 41–54, May 2006.
    [7] K. J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, pp. 650–656, Apr. 2006.
    [8] K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger, “SAD-based stereo matching using FPGAs,” in Proc. Conf. Embed. Comput. Vis., Dec. 2009, pp. 121–138.
    [9] A. Darabiha, W. J. MacLean, and J. Rose, “Reconfigurable hardware implementation of a phase-correlation stereoalgorithm,” Mach. Vision Appl., vol. 17, pp. 116–132, Apr. 2006.
    [10] I. P. Howard and B. J. Rogers. (1995, Nov. 30), Binocular vision and stereopsis (1st ed.) [Online]. 2. Available DOI: 10.1093/acprof:oso/9780195084764.001.0001.
    [11] N. Y.-C. Chang, T.-H. Tsai, B.-H. Hsu, Y.-C. Chen, and T.-S. Chang, “Algorithm and architecture of disparity estimation with mini-census adaptive support weight,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 792–805, Jun. 2010.
    [12] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory and experiment,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, pp. 920–932, Sep. 1994.
    [13] K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral images,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, pp. 1073–1079, Jul. 2009.
    [14] O. Veksler, “Stereo correspondence with compact windows via minimum ratio cycle,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 1654–1660, Dec. 2002.
    [15] Y. Boykov, O. Veksler, and R. Zabih, “A variable window approach to early vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 1283–1294, Dec. 1998.
    [16] Y. Wei and L. Quan, “Region-based progressive stereo matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., Jun. 2004, pp. 106–113.
    [17] X. Sun, X. Mei, S. Jiao, M. Zhou, and H. Wang, “Stereo matching with reliable disparity propagation,” in Proc. IEEE Int. Conf. 3D Imaging, Model., Process., Vis. Transm., May 2011, pp. 132–139.
    [18] P. C. Kuo, A. J. Lin, B. D. Liu, and J. F. Yang, “An advanced video and depth depacking architecture for 3D applications,” J. Inform. Sci. Eng., vol. 31, pp. 1537–1555, Sep. 2015.
    [19] K. L. Lo, “A real-time stereo matching algorithm with iterative aggregation and its VLSI implementation,” M.S. thesis, National Cheng Kung University, Tainan, Taiwan, Jul. 2015.
    [20] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang, “On building an accurate stereo matching system on graphics hardware,” in Proc. IEEE Conf. Comput. Vis. Workshops, Nov. 2011, pp. 467-474.
    [21] W. Wang, J. Yan, N. Xu, Y. Wang, and F.-H. Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, pp. 1696–1708, Jan. 2015.
    [22] C. C. Pham and J. W. Jeon, “Domain transformation-based efficient cost aggregation for local stereo matching,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, pp. 1119–1130, Jul. 2013.
    [23] W. S. Fife and J. K. Archibald, “Improved census transforms for resource-optimized stereo vision,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, pp. 60–73, Jan. 2013.
    [24] Q. Yang, D. Li, L. Wang, and M. Zhang, “Full-image guided filtering for fast stereo matching,” IEEE Signal Process. Lett., vol. 20, pp. 237–240, Mar. 2013.
    [25] K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Comput. Vis. Image Und., vol. 114, no. 11, pp. 1303–1316, Nov. 2010.
    [26] S. E. Reichenbach and F. Geng, “Two-dimensional cubic convolution,” IEEE Trans. Image Process., vol. 12, pp. 857–865, Aug. 2003.
    [27] E. Angel and A. Jain, “A nearest neighbors approach to multidimensional filtering,” in Proc. IEEE conf. Decision Contr. (ICDC), Louisiana, U.S.A., Dec. 1972, pp. 13–15.
    [28] H. S. Hou and H. C. Andrews, “Cubic-splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process., vol. 26, pp. 508–517, Dec. 1978.
    [29] R. G. Keys, “Cubic convolution interpolation for digital image-processing,” IEEE Trans. Acoust. Speech Signal Process., vol. 29, pp. 1153–1160, Dec. 1981.
    [30] H. C. Andrews and C. L. Patterson, “Digital interpolation of discrete images,” IEEE Trans. Comput., vol. 25, pp. 196–202, Feb. 1976.
    [31] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process., vol. 10, pp. 1521–527, Oct. 2001.
    [32] ITU-T SC16/Q6, "Calculation of average PSNR differences between RD-curves,” Apr. 2001.
    [33] Middleburry Stereo Vision Page [Online]. Available: http://vision.middlebury.edu/stereo
    [34] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2007, pp. 1–8.
    [35] D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2007, pp. 1–8.
    [36] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2003, pp. 195–202.
    [37] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. , vol. 47, pp. 7–42, Apr. 2002.
    [38] D.-W. Yang, L.-C. Chu, C.-W. Chen, J. Wang, and M.-D. Shieh, “Depth-reliability-based stereo matching algorithm and its VLSI architecture design,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, pp. 1038–1050, Jun. 2015.
    [39] A. Aysu, M. Sayinta, and C. Cigla, “Low cost FPGA design and implementation of a stereo matching system for 3D-TV applications,” in Proc. IEEE Conf. Very Large Scale Integer., Oct. 2013, pp. 204–209.
    [40] P. L. Chu, “Stereo matching algorithm with fast disparity propagation under homogeneous texture detection and its VLSI implementation,” M.S. thesis, National Cheng Kung University, Tainan, Taiwan, Jul. 2012.
    [41] C. C. Tien, “A fast coarse-to-fine stereo matching algorithm and its VLSI implementation,” M.S. thesis, National Cheng Kung University, Tainan, Taiwan, Jul. 2013.
    [42] H. W. Ho, “A fast local stereo matching algorithm with simple edge detection and its VLSI implementation,” M.S. thesis, National Cheng Kung University, Tainan, Taiwan, Jul. 2014.
    [43] C. L. Chou, “Stereo matching with double refinements for centralized texture depth packing and their VLSI implementations,” M.S. thesis, National Cheng Kung University, Tainan, Taiwan, Jul. 2016.
    [44] D. W. Yang, L. C. Chu, C. W. Chen, J. Wang, and M. D. Shieh, “Depth-reliablity-based stereo matching algorithm and its VLSI architecture design,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, pp. 1038–1050, June 2015.
    [45] C. Ttofis and T. Theocharides, “Towards accurate hardware stereo correspondence: A real-time FPGA implementation of a segmentation-based adaptive support weight algorithm,” in Proc. IEEE Conf. Design, Autom. Test. (DATE), Dresden, Germany, Mar. 2012, pp. 703–708.
    [46] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M. Kim, and J. W. Jeon, “FPGA design and implementation of a real-time stereo vision system,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 15–26, Jan. 2010.

    無法下載圖示 校內:2022-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE