簡易檢索 / 詳目顯示

研究生: 林韋吟
Lin, Wei-Yin
論文名稱: 探討細胞黏附點之複雜度與細胞骨架結構對於細胞攤附型態之影響
The influence of FA complexity and architectures of cytoskeleton on morphology during cell initial spreading
指導教授: 蘇芳慶
Su, Fong-Chin
共同指導教授: 吳佳慶
Wu, Chia-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 63
中文關鍵詞: 貼附點細胞骨架牽張衍架模型應變能細胞型態
外文關鍵詞: focal adhesion, cytoskeleton, tensegrity model, strain energy, cell morphology
相關次數: 點閱:153下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 每種組織均是透過不同細胞的排列組合而成,因此細胞的型態對於組織再生、分化和傷口癒而言是極為重要的議題。許多種不同的形態控制機制會互相協同控制組織的型態,包括局部性的改變如,貼附點的複雜度、細胞型狀與細胞增生等等。特別是細胞貼附大小與數目的改變也同樣會調控組織分開或是堆疊,細胞貼附大小與數目主要是受到細胞內張力影響。細胞會透過貼附點將細胞內部的機械力量由張力絲傳遞至細胞外部,同時並利用微管維持細胞結構的穩定。本研究將利用牽張衍架模型探討貼附點的複雜度與細胞骨架的結構改變,對於細胞型態的影響。本研究選擇四種型態各異的細胞,探討肌纖維母細胞(C2C12)、纖維母細胞 (NIH 3T3)、內皮細胞 (BAEC)和上皮細胞 (MDCK)型態各異的原因。此四種細胞未貼附時的細胞直徑差異不大,然而,經過三小時的貼附後,發現細胞面積由大到小為纖維母細胞,肌纖維母細胞,內皮細胞和上皮細胞。而肌纖維母細胞與上皮細胞的長寬比較小,纖維母細胞與內皮細胞則反之。不同的細胞也具有不同數目的貼附點位,內皮細胞最高、肌纖維母細胞次之,上皮細胞最低。此外,上皮細胞的貼附點幾乎都出現在細胞周圍,不同於肌纖維母細胞和內皮細胞,其貼附點均勻分布在細胞內部。而利用活體細胞影像技術發現,不同的細胞具有不同的攤附速度,內皮細胞的攤附速度最快,肌纖維母細胞與上皮細胞次之。利用電腦模擬的結果發現,均與張力絲和微管內所分佈的能量有關。因為肌纖維母細胞張力絲內的應變能量較高,故需要融合貼附點增加張力絲的機械強度,避免因能量過高而導致張力絲結構不穩定,更因為需要更多的張力絲,肌纖維母細胞同時需活化更多的貼附蛋白。對上皮細胞而言,貼附點較少,細胞的高度較高。而電腦模擬則發現,較少的貼附點除了會讓細胞高度較高外,微管的應變能量對於細胞高度較高的上皮細胞結構的穩定更顯重要。總結而言,細胞的形態主要與細胞骨架內的能量分部有關,進而調控貼附點的複雜度與牽引力量的大小。

    Cell morphology played an important role in tissue regeneration, differentiation and wound healing. During epithelial-mesenchymal transition (EMT) process, cell morphology changes dramatically by altering force balance between extracellular matrix (ECM) and cytoskeletons via focal adhesions (FAs). However, what the force and tension pattern change in cytoskeleton in relation to different morphology was still unknown. The objective of this study was to study how FAs complexity and cytoskeletal architectures influence cell morphology.
    To simulate each step of EMT, the fibroblast (NIH 3T3), myofibroblast (C2C12), endothelial cell (BAEC), and epithelial cell (MDCK) were employed in current study. The cell spreading area and aspect ratio were measured for distinguishing the variance of cell morphology. Results indicated the MDCK and C2C12 cells have circular shape and BAEC and NIH 3T3 cells have polygon geometry. By Immuno-fluorescence staining of focal adhesion kinase (FAK), the number and size of FAs per cell were also found to be different among these cells. The plasmid of green fluorescent protein of FAK (GFP-FAK) was transfected into cells, then the distribution of FAs was observed by living cell image. The dynamics of FAs displayed different patterns in different cells. Beside, the measures of each single FA area in 20, 30, 40, 50 and 60 min for each cell type indicate FAs in C2C12 but not BAEC and MDCK enlarged during cell spreading. The cytoskeleton tensegrity model was employed to simulate the dynamics of intracellular force distribution and total stored energy from the FAs coordinates of GFP-FAK during cell spreading. The total energy in stress fiber increased with increasing spreading area. However, less number of FAs in MDCK caused decreased strain energy stored in microtubules and limited the spreading area.
    In conclusion, the complexity of FAs might influence cell morphology by altering the spreading area through the energy stored in cytoskeleton. On the other words, cells with different FAs distribution and cytoskeletal arrangement reflected distinct energy patterns and resulted in different architectures in constructing elements for various tissues.

    Content 中文摘要 II Abstract IV List of Figures IX List of Tables XI Abbreviations XII Chapter 1 INTRODUCTION 1 1.1 Cell mechanics 1 1.1.1 Mechanotransduction 2 1.1.2 Focal adhesion component 5 1.1.3 Cytoskeleton 7 1.1.3.1. The mechanical property of stress fiber 10 1.1.3.2. The mechanical property of Microtubules 11 1.2 Tensegrity model 13 1.3 Experimental Hypothesis of Research 15 Chapter 2 METHODOLOGY 16 2.1 Experimental design 16 2.2 Cell culture 17 2.3 Immunofluorescence staining 17 2.4 Transfection 18 2.5 Living cell image 19 2.6 Image process and analysis 19 2.6.1 Cell area 19 2.6.2 Aspect ratio 20 2.6.3 Length of stress fiber 20 2.6.4 FA number and area 20 2.6.5 FA coordinates 20 2.7 Computer Simulation 20 2.7.1 Tensegrity Setting 21 2.7.2 Material Properties of Elements 21 2.7.3 Spreading Principles in Dynamic Simulation 23 2.7.4 Calculation of Force and Strain Energy 24 2.8 Statistical analysis 24 Chapter 3 RESULTS 25 3.1 The cell morphology is different among distinct cell type even with the similar cell diameter in suspension 25 3.2 The parameters of FA among different cell types 29 3.3 Spreading dynamics among different cells 32 3.4 Simulation of arrangement of cytoskeleton during cell spreading 38 3.4.1 Simulation of C2C12 38 3.4.2 Simulation of MDCK 41 3.5 Prediction of intracellular energy stored in cytoskeleton during spreading 43 Chapter 4 Discussion 47 Chapter 5 Conclusion 57 Future Work 58 References 59

    alberts, B., A. johnson, et al., Eds. (2005). Molecular biology of the cell. New York, Garland Science.
    Bailly, M., L. Yan, et al. (1998). "Regulation of protrusion shape and adhesion to the substratum during chemotactic responses of mammalian carcinoma cells." Exp Cell Res 241(2): 285-299.
    Bershadsky, A., A. Chausovsky, et al. (1996). "Involvement of microtubules in the control of adhesion-dependent signal transduction." Curr Biol 6(10): 1279-1289.
    Bicek, A. D., E. Tuzel, et al. (2007). "Analysis of microtubule curvature." Methods Cell Biol 83: 237-268.
    Brangwynne, C. P., F. C. MacKintosh, et al. (2006). "Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement." J Cell Biol 173(5): 733-741.
    Brown, R. A., R. Prajapati, et al. (1998). "Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates." J Cell Physiol 175(3): 323-332.
    Bustamante, C. (2004). "Of torques, forces, and protein machines." Protein Sci 13(11): 3061-3065.
    Canadas, P., V. M. Laurent, et al. (2002). "A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton." J Theor Biol 218(2): 155-173.
    Canadas, P., S. Wendling-Mansuy, et al. (2006). "Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics." J Biomech Eng 128(4): 487-495.
    Chen, C. S., M. Mrksich, et al. (1997). "Geometric control of cell life and death." Science 276(5317): 1425-1428.
    Chen, C. S., J. Tan, et al. (2004). "Mechanotransduction at cell-matrix and cell-cell contacts." Annu Rev Biomed Eng 6: 275-302.
    Chen, T.-J., C.-C. Wu, et al. (2010). "Complexity of the Tensegrity Structure for Dynamic Energy and Force Distribution of Cytoskeleton during Cell Spreading." PLoS ONE 12(5).
    Collinsworth, A. M., S. Zhang, et al. (2002). "Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation." Am J Physiol Cell Physiol 283(4): C1219-1227.
    Coughlin, M. F. and D. Stamenovic (1998). "A tensegrity model of the cytoskeleton in spread and round cells." J Biomech Eng 120(6): 770-777.
    Craig, D., A. Krammer, et al. (2001). "Comparison of the early stages of forced unfolding for fibronectin type III modules." Proc Natl Acad Sci U S A 98(10): 5590-5595.
    Crocker, J. C. and B. D. Hoffman (2007). "Multiple-particle tracking and two-point microrheology in cells." Methods Cell Biol 83: 141-178.
    Davies, P. F. (1995). "Flow-mediated endothelial mechanotransduction." Physiol Rev 75(3): 519-560.
    Deguchi, S., T. Ohashi, et al. (2006). "Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells." J Biomech 39(14): 2603-2610.
    Engler, A., L. Bacakova, et al. (2004). "Substrate compliance versus ligand density in cell on gel responses." Biophys J 86(1 Pt 1): 617-628.
    Ezratty, E. J., M. A. Partridge, et al. (2005). "Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase." Nat Cell Biol 7(6): 581-590.
    Filipenko, N. R., S. Attwell, et al. (2005). "Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX." Oncogene 24(38): 5837-5849.
    Gardel, M. L., J. H. Shin, et al. (2004). "Elastic behavior of cross-linked and bundled actin networks." Science 304(5675): 1301-1305.
    Gittes, F., B. Mickey, et al. (1993). "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape." J Cell Biol 120(4): 923-934.
    Gumbiner, B. M. (1996). "Cell adhesion: the molecular basis of tissue architecture and morphogenesis." Cell 84(3): 345-357.
    Ingber, D. E. (1997). "Tensegrity: the architectural basis of cellular mechanotransduction." Annu Rev Physiol 59: 575-599.
    Ingber, D. E. (2005). "Mechanical control of tissue growth: function follows form." Proc Natl Acad Sci U S A 102(33): 11571-11572.
    Ingber, D. E. (2008). "Tensegrity-based mechanosensing from macro to micro." Prog Biophys Mol Biol 97(2-3): 163-179.
    Kasza, K. E., A. C. Rowat, et al. (2007). "The cell as a material." Curr Opin Cell Biol 19(1): 101-107.
    Kaverina, I., O. Krylyshkina, et al. (1999). "Microtubule targeting of substrate contacts promotes their relaxation and dissociation." J Cell Biol 146(5): 1033-1044.
    Kaverina, I., K. Rottner, et al. (1998). "Targeting, capture, and stabilization of microtubules at early focal adhesions." J Cell Biol 142(1): 181-190.
    Keller, R. E. (1980). "The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis." J Embryol Exp Morphol 60: 201-234.
    Kenner, H. (1976). Geodesic math and how to use it. Berkeley and Los Angeles, California, University of California Press.
    Kolega, J., L. W. Janson, et al. (1991). "The role of solation-contraction coupling in regulating stress fiber dynamics in nonmuscle cells." J Cell Biol 114(5): 993-1003.
    MacKintosh, F. C., J. Kas, et al. (1995). "Elasticity of semiflexible biopolymer networks." Phys Rev Lett 75(24): 4425-4428.
    Maurin, B., P. Canadas, et al. (2008). "Mechanical model of cytoskeleton structuration during cell adhesion and spreading." J Biomech 41(9): 2036-2041.
    McBeath, R., D. M. Pirone, et al. (2004). "Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment." Dev Cell 6(4): 483-495.
    McGarry, J. G. and P. J. Prendergast (2004). "A three-dimensional finite element model of an adherent eukaryotic cell." Eur Cell Mater 7: 27-33; discussion 33-24.
    Mitchison, T. and M. Kirschner (1984). "Dynamic instability of microtubule growth." Nature 312(5991): 237-242.
    Myat, M. M. and D. J. Andrew (2000). "Organ shape in the Drosophila salivary gland is controlled by regulated, sequential internalization of the primordia." Development 127(4): 679-691.
    Nagayama, K. and T. Matsumoto (2008). "Contribution of actin filaments and microtubules to quasi-in situ tensile properties and internal force balance of cultured smooth muscle cells on a substrate." Am J Physiol Cell Physiol 295(6): C1569-1578.
    Nagayama, K. and T. Matsumoto (2010). "Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers." J Biomech 43(8): 1443-1449.
    Needleman, D. J., M. A. Ojeda-Lopez, et al. (2004). "Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces." Proc Natl Acad Sci U S A 101(46): 16099-16103.
    Nelson, C. M. (2009). "Geometric control of tissue morphogenesis." Biochim Biophys Acta 1793(5): 903-910.
    Nelson, C. M., R. P. Jean, et al. (2005). "Emergent patterns of growth controlled by multicellular form and mechanics." Proc Natl Acad Sci U S A 102(33): 11594-11599.
    Nicolas, A., A. Besser, et al. (2008). "Dynamics of cellular focal adhesions on deformable substrates: consequences for cell force microscopy." Biophys J 95(2): 527-539.
    Omelchenko, T., J. M. Vasiliev, et al. (2002). "Mechanisms of polarization of the shape of fibroblasts and epitheliocytes: Separation of the roles of microtubules and Rho-dependent actin-myosin contractility." Proc Natl Acad Sci U S A 99(16): 10452-10457.
    Panorchan, P., J. S. Lee, et al. (2007). "Probing cellular mechanical responses to stimuli using ballistic intracellular nanorheology." Methods Cell Biol 83: 115-140.
    Pelling, A. E., D. W. Dawson, et al. (2007). "Distinct contributions of microtubule subtypes to cell membrane shape and stability." Nanomedicine 3(1): 43-52.
    Praetorius, H. A. and K. R. Spring (2005). "A physiological view of the primary cilium." Annu Rev Physiol 67: 515-529.
    Pugh, A. (1976). An introduction to tensegrity. Berkeley and Los Angeles, California, University of California Press.
    Radmacher, M. (2007). "Studying the mechanics of cellular processes by atomic force microscopy." Methods Cell Biol 83: 347-372.
    Rape, A. D., W. H. Guo, et al. (2011). "The regulation of traction force in relation to cell shape and focal adhesions." Biomaterials 32(8): 2043-2051.
    Rhee, S., H. Jiang, et al. (2007). "Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions." Proc Natl Acad Sci U S A 104(13): 5425-5430.
    Salazar-Ciudad, I., J. Jernvall, et al. (2003). "Mechanisms of pattern formation in development and evolution." Development 130(10): 2027-2037.
    Schober, M., S. Raghavan, et al. (2007). "Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics." J Cell Biol 176(5): 667-680.
    Schoenwolf, G. C. and M. V. Franks (1984). "Quantitative analyses of changes in cell shapes during bending of the avian neural plate." Dev Biol 105(2): 257-272.
    Shiu, Y. T., S. Li, et al. (2004). "Rho mediates the shear-enhancement of endothelial cell migration and traction force generation." Biophys J 86(4): 2558-2565.
    Silver, F. H. and L. M. Siperko (2003). "Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix?" Crit Rev Biomed Eng 31(4): 255-331.
    Singhvi, R., A. Kumar, et al. (1994). "Engineering cell shape and function." Science 264(5159): 696-698.
    Small, J. V., B. Geiger, et al. (2002). "How do microtubules guide migrating cells?" Nat Rev Mol Cell Biol 3(12): 957-964.
    Smilenov, L. B., A. Mikhailov, et al. (1999). "Focal adhesion motility revealed in stationary fibroblasts." Science 286(5442): 1172-1174.
    Steinberg, M. S. (1962). "Mechanism of tissue reconstruction by dissociated cells. II. Time-course of events." Science 137(3532): 762-763.
    Tagawa, H., N. Wang, et al. (1997). "Cytoskeletal mechanics in pressure-overload cardiac hypertrophy." Circ Res 80(2): 281-289.
    Tsutsui, H., K. Ishihara, et al. (1993). "Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium." Science 260(5108): 682-687.
    Vogel, V. (2006). "Mechanotransduction involving multimodular proteins: converting force into biochemical signals." Annu Rev Biophys Biomol Struct 35: 459-488.
    Wang, N. and Z. Suo (2005). "Long-distance propagation of forces in a cell." Biochem Biophys Res Commun 328(4): 1133-1138.
    Wendling, S., P. CaNadas, et al. (2002). "Interrelations between elastic energy and strain in a tensegrity model: contribution to the analysis of the mechanical response in living cells." Comput Methods Biomech Biomed Engin 5(1): 1-6.
    Zhang, W. and S. J. Gunst (2006). "Dynamic association between alpha-actinin and beta-integrin regulates contraction of canine tracheal smooth muscle." J Physiol 572(Pt 3): 659-676.
    Zheng, J., R. E. Buxbaum, et al. (1993). "Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation." J Cell Sci 104 ( Pt 4): 1239-1250.

    下載圖示 校內:2017-02-15公開
    校外:2017-02-15公開
    QR CODE