簡易檢索 / 詳目顯示

研究生: 楊隆生
Yang, Lung-sheng
論文名稱: 新型高功因昇/降壓交流/直流轉換器
Novel High-Power-Factor Buck/Boost AC/DC converters
指導教授: 梁從主
Liang, Tsorng-juu
陳建富
Chen, Jiann-fuh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 103
中文關鍵詞: 功因校正交流/直流降-升壓型轉換器不連續導通模式
外文關鍵詞: discontinuous conduction mode, power-factor-correction AC/DC buck-boost convert
相關次數: 點閱:113下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究高功因單相及三相交流/直流轉換器,提出新型單相及三相功因校正交流/直流降-升壓型轉換器。此新型單相及三相交流/直流降-升壓型轉換器,操作在不連續導通模式,使用一簡單的波寬調變技術來完成較佳的電力品質,包含單位功因、正弦波形之輸入電流及低總諧波失真之輸入電流。在新型單相交流/直流降-升壓型轉換器方面,相對於傳統的單相交流/直流降-升壓型轉換器,可操作於較大範圍責任週期。因此可適用於普用型輸入電壓(85 – 265 V)及寬廣的負載範圍。應用此新型單相交流/直流降-升壓型轉換器串級一直流/直流降壓型轉換器作單級化單相交流/直流轉換器設計。應用於普用型輸入電壓、直流低壓輸出及寬廣的負載範圍。且基於實用原則,直流鏈結電壓必須小於450 V,由實驗結果知其直流鏈結電壓小於210 V,達到要求。在新型三相交流/直流降-升壓型轉換器方面,於每一切換週期對輸出電容器及負載提供固定的平均電流,因此其直流輸出電壓漣波的六倍電源頻率成分可被消除,僅受單一切換週期影響,所以可採用小容量的輸出電容器。應用此新型三相交流/直流降-升壓型轉換器串級一直流/直流順向型轉換器作單級化三相交流/直流轉換器設計,使用於直流低壓輸出。因直流鏈結電壓漣波僅受單一切換週期影響,所以可採用小容量的直流鏈結電容器。且後半級在重載時操作在連續導通模式,輕載時操作在不連續導通模式,使直流鏈結電壓小於280 V,達到實用原則。在論文內對於電壓增益及邊界操作狀態之穩態分析與電感器、電容器及輸入濾波器之設計均有詳細的討論,並完成硬體電路來驗證理論及可行性。

    The novel single-phase and three-phase power-factor-correction (PFC) AC/DC buck-boost converters are proposed in this dissertation. The novel PFC converters are operated in discontinuous conduction mode (DCM) by using a simple pulse-width modulation (PWM) control strategy to achieve good power quality, including almost unity power factor, purely sinusoidal input current and low total harmonic distortion of input current (THDi). For the novel single-phase PFC AC/DC buck-boost converter, this converter can be operated with larger duty-ratio range than the conventional single-phase PFC AC/DC buck-boost converter. Therefore, this converter can be applied for universal input voltage (85 – 265 V) and wide output-power range. Moreover, a single-stage single-phase AC/DC converter, which integrates the novel single-phase AC/DC buck-boost converter with a DC/DC buck converter, is presented. This converter can be used for universal input voltage, low DC output voltage and wide output-power range. Based on practical applications, the intermediate DC-link voltage must be less than 450 V. From the experimental results, one can see that the intermediate DC-link voltage is below 210 V. For the novel three-phase PFC AC/DC buck-boost converter, this converter provides a constant average current to the output capacitor and load in each switching period. So the DC output-voltage ripple is affected by only one switching period. The ripple component of six-order line frequency can be eliminated. Therefore, a smaller output capacitor can be used to replace the bulky capacitor. Also, a single-stage three-phase AC/DC converter, which integrates the novel three-phase PFC AC/DC buck-boost converter with a DC/DC forward converter, is proposed for low DC output-voltage applications. Since the ripple component of the intermediate DC-link voltage is affected by only one switching period, a smaller DC-link capacitor can be used. Based on practical applications, the rear semi-stage is operated in continuous conduction mode (CCM) at heavy loads, and is operated in DCM at light loads. From the experimental results, one can see that the intermediate DC-link voltage can be controlled within 280 V. Finally, the steady-state analysis of voltage gain, boundary operating condition, as well as the selection of inductor, output capacitor and input filter are presented. Also, hardware circuits with simple control logic are implemented to illustrate the theoretical analysis and feasibility.

    CONTENTS I LIST OF FIGURES III CHAPTER 1 INTRODUCTION 1.1 Motivation 1 1.2 Literature survey 1 1.3 Outline of this dissertation 10 CHAPTER 2 NOVEL SINGLE-PHASE POWER-FACTOR-CORRECTION AC/DC BUCK-BOOST CONVERTER 2.1 Conventional single-phase PFC AC/DC buck-boost converter 12 2.1.1 Operating principle 12 2.1.2 Steady-state analysis 16 2.2 Novel single-phase PFC AC/DC buck-boost converter with extended 19 duty-ratio capability 2.2.1 Operating principle 19 2.2.2 Steady-state analysis 23 2.2.3 Selections of inductor and capacitor 28 2.2.4 Experimental results 29 CHAPTER 3 SINGLE-STAGE SINGLE-PHASE AC/DC CONVERTERS 3.1 Operating principle 34 3.2 Steady-state analysis 39 3.3 Selections of inductor and capacitor 45 3.4 Experimental results 46 CHAPTER 4 NOVEL THREE-PHASE POWER-FACTOR-CORRECTION AC/DC BUCK-BOOST CONVERTER 4.1 Operating principle 51 4.2 Steady-state analysis 58 4.3 Selections of inductor and capacitor 63 4.4 Experimental results 66 CHAPTER 5 SINGLE-STAGE THREE-PHASE AC/DC CONVERTERS 5.1 Operating principle 71 5.2 Steady-state analysis 77 5.3 Selections of inductor and capacitor 84 5.4 Experimental results 85 CHAPTER 6 CONCLUSIONS 91 REFERENCES 93 LIST OF PUBLICATIONS 102

    [1] P. C. Sen, “Electric motor drives and control-past, present and future, ” IEEE Trans. on Industrial Electronics, vol. 37, no. 6, pp. 562-575, 1990.
    [2] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, John Wiley & Sons, Inc., 2003.
    [3] R. C. Dugan, M. F. McGranaghan and H. W. Beaty, Electrical Power Systems Quality, McGraw-Hill, Inc., 1996.
    [4] J. Holtzs, “Pulsewidth modulation – a survey,” IEEE Trans. on Industrial Electronics, vol. 39, no. 5, pp. 410-420, 1992.
    [5] M. Dawande and G. K. Dubey, “Bang-bang current control with predecided switching frequency for switch-mode rectifiers,” IEEE Trans. on Industrial Electronics, vol. 46, no. 1, pp. 61-66, 1999.
    [6] M. Boost and P. D. Ziogas, “State-of-the-art carrier PWM techniques: a critical evaluation,” IEEE Trans. on Industry Applications, vol. 24, no. 2, pp. 271-280, 1988.
    [7] G. Joos, P. D. Ziogas and D. Vincenti, “A model reference adaptive PWM technique,” IEEE Trans. on Power Electronics, vol. 5, no. 4, pp. 485-494, 1990.
    [8] Electromagnetic Compatibility (EMC) – Part 3: Limits, Section 2: Limits for Harmonic Current Emissions (Equipment Input Current < 16A Per Phase), IEC 1000-3-2, 1st ed., 1995-03.
    [9] J. Sebastian, A. Fernandez, P. Villegas, M. Hernando and M. J. Prieto, “New topologies of active input current shapers to allow AC-to-DC converters to comply with the IEC-1000-3-2,” IEEE PESC., pp. 565-570, 2000.
    [10] O. Stihi and B. T. Ooi, “A single-phase controlled-current PWM rectifier,” IEEE Trans. on Power Electronics, vol. 3, no. 4, pp. 453-459, 1988.
    [11] Y. Nishida, O. Miyashita, T. Haneyoshi, H. Tomita and A. Maeda, “A predictive instantaneous-current PWM controlled rectifier with AC-side harmonic current reduction,” IEEE Trans. on Industrial Electronics, vol. 44, no. 3, pp. 337-343, 1997.
    [12] R. Oruganti, K. Nagaswamy and L. K. Sang, “Predicted (on-time) equal-charge criterion scheme for constant-frequency control of single-phase boost-type AC-DC converters,” IEEE Trans. on Power Electronics, vol. 13, no. 1, pp. 47-57, 1998.
    [13] T. J. Liang and J. L. Shyu, “Improved DSP-controlled online UPS system with high real output power,” IEE Proc. Electric Power Applications, vol. 151, no. 1, pp. 121-127, 2004.
    [14] J. T. Boys and A. W. Green, “Current-forced single-phase reversible rectifier,” IEE Proc. B, vol. 136, no. 5, pp. 205-211, 1989.
    [15] R. Srinivasan and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. on Power Electronics, vol. 13, no. 3, pp. 487-500, 1998.
    [16] Z. Yang and P. C. Sen, “Power factor correction circuits with robust current control,” IEEE Trans. on Aerospace and Electronic Systems, vol. 38, no. 4, pp. 1210-1219, 2002.
    [17] M. Kazerani, P. D. Ziogas and G. Joos, “A novel active current waveshaping technique for solid-state input power factor conditioners,” IEEE Trans. on Industrial Electronics, vol. 38, no. 1, pp. 72-78, 1991.
    [18] S. Buso, P. Mattavelli, L. Rossetto and G. Spiazzi, “Simple digital control improving dynamic performance of power factor preregulators,” IEEE Trans. on Power Electronics, vol. 13, no. 5, pp. 814-823, 1998.
    [19] D. Y. Qiu, S. C. Yip, H. S. H. Chung and S. Y. R. Hui, “Single current sensor control for single-phase active power factor correction,” IEEE Trans. on Power Electronics, vol. 17, no. 5, pp. 623-632, 2002.
    [20] G. H. Rim, W. H. Kim and I. Kang, “A simplified analog controller for power factor correction converters,” IEEE Trans. on Industrial Electronics, vol. 42, no. 4, pp. 417-419, 1995.
    [21] R. Itoh and K. Ishizaka, “Single-phase sinusoidal converter using MOSFETs,” IEE Proc. B, vol. 136, no. 5, pp. 237-242, 1989.
    [22] A. W. Green, J. T. Boys and G. F. Gates, “3-phase voltage sourced reversible rectifier,” IEE Proc. B, vol. 135, no. 6, pp. 362-370, 1988.
    [23] R. Wu, S. B. Dewan and G. R. Slemon, “A PWM ac-to-dc converter with fixed switching frequency,” IEEE Trans. on Industry Applications, vol. 26, no. 5, pp. 880-885, 1990.
    [24] H. Komurcugil and O. Kukrer, “A novel current-control method for three-phase PWM AC/DC voltage-source converters,” IEEE Trans. on Industrial Electronics, vol. 46, no. 3, pp. 544-553, 1999.
    [25] T. Ohnuki, O. Miyashita, P. Lataire and G. Maggetto, “Control of a three-phase PWM rectifier using estimated AC-side and DC-side voltages,” IEEE Trans. on Power Electronics, vol. 14, no. 2, pp. 222-226, 1999.
    [26] B. H. Kwon, J. H. Youm and J. W. Lim, “A line-voltage-sensorless synchronous rectifier,” IEEE Trans. on Power Electronics, vol. 14, no. 5, pp. 966-972, 1999.
    [27] R. Wu, S. B. Dewan and G. R. Slemon, “Analysis of a PWM ac to dc voltage source converter under the predicted current control with a fixed switching frequency,” IEEE Trans. on Industry Applications, vol. 27, no. 4, pp. 756-764, 1991.
    [28] M. C. Jiang, C. T. Pan and L. S. Yang, “An economic three-phase current-forced reversible AC to DC converter,” IEEE TENCON., pp. 526-530, 1993.
    [29] B. R. Lin and D. P. Wu, “Implementation of three-phase power factor correction circuit with less power switches and current sensors,” IEEE Trans. on Aerospace and Electronic Systems, vol. 34, no. 2, pp. 664-670, 1998.
    [30] J. W. Kolar, H. Ertl and F. C. Zach, “Realization considerations for unidirectional three-phase PWM rectifier system with low effects on the mains,” Power Electronics and Motion Control, 1990.
    [31] R. J. Tu and C. L. Chen, “A new space-vector-modulated control for a unidirectional three-phase switch-mode rectifier,” IEEE Trans. on Industrial Electronics, vol. 45, no. 2, pp. 256-262, 1998.
    [32] P. Liu, Y. Meng, Y. Kang, H. Zhang and J. Chen, “Analysis of single-phase boost power factor correction (PFC) converter,” IEEE PEDS., pp. 933-937, 1999.
    [33] X. Xie, Z. Zhou, J. M. Zhang, Z. Qian and F. Z. Peng, “Analysis and design of fully DCM clamped-current boost power-factor corrector with universal input voltage range,” IEEE PESC., pp. 1115-1119, 2002.
    [34] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” IEEE APEC., pp. 267-273, 1993.
    [35] D. S. L. Simonetti, J. L . F. Vieira and G. C. D. Sousa, “Modeling of the high-power-factor discontinuous boost rectifiers,“ IEEE Trans. on Industrial Electronics, vol. 46, no. 4, pp. 788-795, 1999.
    [36] A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,“ IEEE Trans. on Power Electronics, vol. 6, no. 1, pp. 83-92, 1991.
    [37] P. Barbosa, F. Canales, J. C. Cresbier and F. C. Lee, “Interleaved three-phase boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation,“ IEEE Trans. on Power Electronics, vol. 16, no. 5, pp. 724-734, 2001.
    [38] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” IEEE PESC., pp. 657-662, 1993.
    [39] D. F. Weng and S. Yuvarajan, “Constant-switching-frequency AC-DC converter using second-harmonic-injected PWM,“ IEEE Trans. on Power Electronics, vol. 11, no. 1, pp. 115-121, 1996.
    [40] R. Redl, “Reducing distortion in boost rectifiers with automatic control,“ IEEE APEC., pp. 74-80, 1997.
    [41] Q. Huang and F. C. Lee, “Harmonic reduction in a single-switch, three-phase boost rectifier with high order harmonic injected PWM,“ IEEE PESC., pp. 1266-1271, 1996.
    [42] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,“ IEEE Trans. on Industry Applications, vol. 34, no. 6, pp. 1327-1334, 1998.
    [43] K. Schenk and S. Cuk, “A simple three-phase power factor corrector with improved harmonic distortion,“ IEEE PESC., pp. 399-405, 1997.
    [44] K. Hirachi and M. Nakaoka, “Improved control strategy on buck-type PFC converter,“ IEEE Electronics Letters, vol. 34, no. 12, pp. 1162-1163, 1998.
    [45] G. Spiazzi and S. Buso, “Power factor preregulators based on combined buck-flyback topologies,“ IEEE Trans. on Power Electronics, vol. 15, no. 2, pp. 197-204, 2000.
    [46] R. Oruganti and M. Palaniapan, “Inductor voltage control of buck-type single-phase AC-DC converter,“ IEEE Trans. on Power Electronics, vol. 15, no. 2, pp. 411-417, 2000.
    [47] S. B. Han, N. S. Choi, C. T. Rim and G. H. Cho, “Modeling and analysis of static and dynamic characteristics for buck-type three-phase PWM rectifier by circuit DQ transformation,“ IEEE Trans. on Power Electronics, vol. 13, no. 2, pp. 323-336, 1998.
    [48] R. Oruganti and M. Palaniapan, “Extension of inductor voltage control to three-phase buck-type AC-DC converter,“ IEEE Trans. on Power Electronics, vol. 15, no. 2, pp. 295-302, 2000.
    [49] L. S. Yang, T. J. Liang and J. F. Chen, “Three-phase AC/DC buck converter with bidirectional capability,” IEEE PESC., 2006.
    [50] R. Itoh, “Steady-state and transient characteristics of a single-way step-down PWM GTO voltage-source convertor with sinusoidal supply currents,” IEE Proc. B, vol. 136, no. 4, pp. 168-174, 1989.
    [51] A. Mechi and S. Funabiki, “Step-up/down voltage PWM AC to DC convertor with one switching device,” IEE Proc. B, vol. 140, no. 1, pp. 35-43, 1993.
    [52] A. Abouloifa, F. G. Greyc, Ismra and M. Juin, “Nonlinear control of buck-boost AC/DC converters: output voltage regulation & power factor correction,” American Control Conference, pp. 168-173, 2004.
    [53] O. Lopez, L. G. Vicuna, M. Castilla, J. Matas and M. Lopez, “Sliding-mode-control design of a high-power-factor buck-boost rectifier,” IEEE Trans. on Industrial Electronics, vol. 46, no. 3, pp. 604-612, 1999.
    [54] Y. Nishida, S. Motegi and A. Maeda, “A single-phase buck-boost AC-to-DC converter with high-quality input and output waveforms,” IEEE ISIE., pp. 433-438, 1995.
    [55] V. F. Pires and J. F. A. Silva, “Single-stage three-phase buck-boost type AC-DC converter with high power factor,“ IEEE Trans. on Power Electronics, vol. 16, no. 6, pp. 784-793, 2001.
    [56] A. Mechi and S. Funabiki, “Three-phase PWM Ac to DC converter with step up/down voltage,” IEEE IAS., pp. 703-709, 1992.
    [57] R. Itoh and K. Ishizaka, “Three-phase flyback AC-DC convertor with sinusoidal supply currents,” IEE Proc. B, vol. 138, no. 3, pp. 143-151, 1991.
    [58] V. F. Pires and J. F. A. Silva, “Three-phase single-stage four-switch PFC buck-boost-type rectifier,“ IEEE Trans. on Industrial Electronics, vol. 52, no. 2, pp. 444-453, 2005.
    [59] W. Guo and P. K. Jain, “Comparison between boost and buckboost implemented PFC inverter with build-in soft switching and a unified controller,” IEEE PESC., pp. 472-477, 2001.
    [60] C. T. Pan and T. C. Chen, “Modeling and design of an AC to DC converter,“ IEEE Trans. on Power Electronics, vol. 8, no. 4, pp. 501-508, 1993.
    [61] K. W. Siu, Y. S. Lee and C. K. Tse, “Analysis and experimental evaluation of single-switch fast-response switching regulators with unity power factor,“ IEEE Trans. on Industry Applications, vol. 33, no. 5, pp. 1260-1266, 1997.
    [62] Y. S. Lee, K. W. Siu and B. T. Lin, “Novel single-stage isolated power-factor-corrected power supplies with regenerative clamping,“ IEEE Trans. on Industry Applications, vol. 34, no. 6, pp. 1299-1308, 1998.
    [63] T. F. Wu, S. A. Liang and C. H. Lee, “A family of isolated single-stage ZVS-PWM active-clamping converters,” IEEE PESC., pp. 665-670, 1999.
    [64] J. L. Lin, J. C. Hsieh and T. H. Tsai, “Dynamics analysis of a single-stage isolated high power factor converter with a magnetic switch,” IEE Proc. Electric Power Applications, vol. 152, no. 3, pp. 643-652, 2005.
    [65] M. Daniele, P. K. Jain and G. Joos, “A single-stage power-factor-corrected AC/DC converter,“ IEEE Trans. on Power Electronics, vol. 14, no. 6, pp. 1046-1055, 1999.
    [66] H. L. Do, “Single-stage single-switch power factor correction AC/DC converter,” IEE Proc. Electric Power Applications, vol. 152, no. 6, pp. 1578-1584, 2005.
    [67] Q. Zhao, F. C. Lee and F. S. Tsai, “Voltage and current stress reduction in single-stage power factor correction AC/DC converters with bulk capacitor voltage feedback,“ IEEE Trans. on Power Electronics, vol. 17, no. 4, pp. 477-484, 2002.
    [68] H. Wei, I. Batarseh and P. Kornetzky, “Novel single-switch converter with power factor correction,“ IEEE Trans. on Aerospace and Electronic Systems, vol. 35, no. 4, pp. 1344-1353, 1999.
    [69] T. F. Wu and Y. K. Chen, “Analysis and design of an isolated single-stage converter achieving power-factor correction and fast regulation,“ IEEE Trans. on Industrial Electronics, vol. 46, no. 4, pp. 759-767, 1999.
    [70] C. T. Pan and J. J. Shieh, “A single-stage three-phase boost-buck AC/DC converter based on generalized zero-space vectors,“ IEEE Trans. on Power Electronics, vol. 14, no. 5, pp. 949-958, 1999.
    [71] J. Kikuchi and T. A. Lipo, “Three-phase PWM boost-buck rectifiers with power-regenerating capability,“ IEEE Trans. on Industry Applications, vol. 38, no. 5, pp. 1361-1369, 2002.
    [72] J. J. Shieh, “SEPIC derived three-phase switching mode rectifier with sinusoidal input current,” IEE Proc. Electric Power Applications, vol. 147, no. 4, pp. 286-294, 2000.
    [73] R. Ayyanar, N. Mohan and J. Sun, “Single-stage three-phase power factor correction circuit using three isolated single-phase SEPIC converters operating in CCM,” IEEE PESC., pp. 353-358, 2000.
    [74] F. S. Hamdad and A. K. S. Bhat, “A high-frequency transformer isolated soft-switching three-phase AC-to-DC converter with low harmonic distortion,” IEEE PESC., pp. 545-551, 1998.
    [75] F. S. Hamdad and A. K. S. Bhat, “A novel soft-switching high-frequency transformer isolated three-phase AC-to-DC converter with low harmonic distortion,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 35-45, 2004.
    [76] Y. Panov, J. G. Cho and F. C. Lee, “Zero-voltage-switching three-phase single-stage power factor correction convertor,” IEE Proc. Electric Power Applications, vol. 144, no. 5, pp. 343-348, 1997.

    下載圖示 校內:2009-12-11公開
    校外:2009-12-11公開
    QR CODE