| 研究生: |
陳翔宇 Chen, Hsiang-Yu |
|---|---|
| 論文名稱: |
具統一模運算單元之高性能橢圓曲線點乘處理器 A High-Performance Elliptic Curve Point Multiplication Processor with Unified Modular Arithmetic Units |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 密碼學 、橢圓曲線密碼學 、橢圓曲線點乘積 、硬體利用率 、模算術運算 |
| 外文關鍵詞: | cryptography, elliptic curve cryptography, elliptic curve point multiplication, hardware utilization efficiency, modular arithmetic |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
橢圓曲線密碼學目前被認為是最有前景且廣泛被使用的非對稱式密碼學,因為它可以以更短的密鑰長度提供同等的安全性。橢圓曲線點乘積是基於ECC的系統中最重要且成本最高的運算。橢圓曲線點乘積由許多模算術運算組成,包括模乘法、加法和減法。因此,橢圓曲線點乘處理器的效率很大程度上取決於其模算數運算單元的性能。然而,目前的橢圓曲線點乘處理器在不同的模組中執行這些模算術運算,可能導致硬體利用效率低下。為了解決這個問題,在本文中,我們提出了統一模算術單元,這些單元可以有效地計算在橢圓曲線點乘積中所需的所有模運算,我們也利用所提出的統一模算術單元實現了一個高性能的橢圓曲線點乘積處理器。因此該設計可以顯著節省面積並極大提升橢圓曲線點乘處理器的性能。此外,我們也優化了Hamburg's Montgomery ladder的排程,以簡化控制邏輯並提高硬體利用效率。實驗結果顯示,與現有的橢圓曲線點乘處理器相比,具有統一的模運算單元的橢圓曲線點乘處理器具有非常低的面積、相當高的工作頻率,以及比現有的橢圓曲線點乘處理器更小的面積與時間之乘積。
Elliptic Curve Cryptography (ECC) is the most promising and widely used asymmetric cryptography since it can provide the same security level with a much shorter key length. The elliptic curve point multiplication (ECPM) is the most important and costliest operation in ECC-based systems. ECPM comprises many modular arithmetic operations, including modular multiplication, addition, and subtraction. Therefore, the efficiency of an ECPM processor highly depends on the performance of its modular arithmetic units. However, present ECPM processors perform these modular operations in separate modules, which may lead to low hardware utilization efficiency. To solve the problem, in this work, we propose a unified modular arithmetic unit (UMAU) that can support all the required modular operations in ECPM efficiently. Furthermore, we utilized the proposed UMAUs to realize a high-performance ECPM processor. As a result, the area of an ECPM processor can be significantly saved, and the performance can be enhanced. Additionally, we optimize the scheduling of Hamburg’s Montgomery ladder to simplify the control logic and enhance hardware utilization efficiency. Experimental results show that the ECPM processor with the proposed UMAU achieves lower area, higher operating clock frequency, and much less area-time product than the present ECPM processors.
[1] M. Bafandehkar, S. M. Yasin, R. Mahmod, and Z. M. Hanapi, ‘‘Comparison of ECC and RSA algorithm in resource constrained devices,’’ in Proc. Int. Conf. IT Converg. Secur. (ICITCS), Dec., 2013, pp. 1-3.
[2] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee, ‘‘Efficient poweranalysis-resistant dual-field elliptic curve cryptographic processor using heterogeneous dual-processing-element architecture,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 1, pp. 49–61, Feb. 2013.
[3] K. Javeed, X. Wang, and M. Scott, ‘‘High performance hardware supportfor elliptic curve cryptography over general prime field,’’ Microprocess. Microsyst., vol. 51, pp. 331–342, Jun. 2017.
[4] M. S. Hossain, Y. Kong, E. Saeedi, and N. C. Vayalil, ‘‘High-performance elliptic curve cryptography processor over NIST prime fields,’’ IET Comput., Digit. Techn., vol. 11, no. 1, pp. 33–42, 2017.
[5] Y. A. Shah, K. Javeed, S. Azmat, and X. J. Wang, “A high-speed RSDbased flexible ECC processor for arbitrary curves over general prime field,” Int. J. Circuit Theory Appl., vol. 46, no. 10, pp. 1858–1878, Oct. 2018
[6] H. Marzouqi, M. Al-Qutayri, and K. Salah, ‘‘An FPGA implementation of NIST 256 prime field ECC processor,’’ in Proc. IEEE Int. Conf. Electron. Circuits Syst. (ICECS), Dec. 2013, pp. 493–496.
[7] T. Kudithi and R. Sakthivel, “An efficient hardware implementation of the elliptic curve cryptographic processor over prime field, Fp,” Int. J. Circuit Theor. Appl., vol. 48, no. 8, pp. 1256–1273, Mar. 2020
[8] Y. Xie, Y. Liu, X. Zheng, et al, “A Dual-Core High-Performance Processor for Elliptic Curve Cryptography in GF (p) Over Generic Weierstrass Curves,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 69, no. 11, pp. 4523-4527, 2022.
[9] P. L. Montgomery, “Modular multiplication without trial division,” Math. Comput., vol. 44, pp 519–521, 1985
[10] M. Joye and S.-M. Yen, “The Montgomery powering ladder,” in Proc. Cryptogr. Hardware Embedded Syst., 2003, pp. 291–302.
[11] M. Hamburg, "Faster Montgomery and double-add ladders for short Weierstrass curves,” IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2020, no. 4, pp. 189–208, 2020.
[12] A. M. Awaludin, H. T. Larasati, and H. Kim, ‘‘High-speed and unified ECC processor for generic weierstrass curves over GF(p) on FPGA,’’ Sensors, vol. 21, no. 4, p. 1451, Feb., 2021
[13] P. L. Montgomery, ‘‘Modular multiplication without trial division,’’ Math. Comput., vol. 44, no. 170, pp. 519-521, 1985.
[14] C. D. Walter, ‘‘Montgomery exponentiation needs no final subtractions,’’ Electron. Lett., vol. 35, no. 21, pp. 1831-1832, 1999.
[15] Y. Kim, W. Kang, and J. Choi, ‘‘Implementation of 1024-bit modular processor for RSA cryptosystem,’’ in Proc. 2nd IEEE Asia-Pacific Conf. ASIC, Aug. 2000, pp. 187–190.
[16] M.D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.
[17] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang, ‘‘An efficient CSA architecture for Montgomery modular multiplication,’’ Microprocess. Microsyst., vol. 31, no. 7, pp. 456-459, 2007
[18] P. V. A. Mohan, Residue Number Systems: Theory and Applications. Switzerland: Springer, 2016.
[19] A. A. Abd-Elkader, M. Rashdan, E.-S. A. Hasaneen, and H. F. Hamed, ‘‘Efficient implementation of Montgomery modular multiplier on FPGA,’’ Computers & Electrical Engineering, vol. 97, pp. 107585, 2022.
[20] M. S. Rahman, M. S. Hossain, E. H. Rahat, D. R. Dipta, H. M. R. Faruque, and F. K. Fattah, ‘‘Efficient hardware implementation of 256-bit ECC processor over prime field,’’ Int. Conf. Comput. Commun. Technol. Agric. Eng. (ECCE), 2019: IEEE, pp. 1-6.
[21] R. Liu and S. Li, ‘‘A design and implementation of Montgomery modular multiplier,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019: IEEE, pp. 1-4.
[22] M. M. Islam, M. S. Hossain, M. K. Hasan, M. Shahjalal, and Y. M. Jang, ‘‘FPGA implementation of high-speed area-efficient processor for elliptic curve point multiplication over prime field,’’ IEEE Access, vol. 7, pp. 178811-178826, 2019.
[23] K. Javeed and X. Wang, ‘‘FPGA based high-speed SPA-resistant elliptic curve scalar multiplier architecture,’’ Int. J. Reconfigurable Comput., vol. 2016, no. 5, pp. 1–10, 2016.
校內:2028-08-22公開