| 研究生: |
吳佳璋 Wu, Jia-Jhang |
|---|---|
| 論文名稱: |
一個具有無負載架構之低功率高解析度的管線逐漸逼近式類比數位轉換器 A Low Power and High Resolution Pipelined SAR ADC with Loading-Free Architecture |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 電容共享架構 、類比至數位轉換器 、逐漸逼近管線式類比至數位轉換器 |
| 外文關鍵詞: | Loading-free architecture, ADC, Pipelined SAR ADC |
| 相關次數: | 點閱:104 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個具有無負載架構十二位元,每秒八千萬取樣之低功率管線逐漸逼近式類比至數位轉換器。本論文提出的無負載架構概念是將回授電容和第二級逐漸逼近式類比數位轉換器的電容陣列做共用,以達到降低高效能放大器的功率消耗和整體電容面積。此外,針對效能要求較為嚴格的第一級逐漸逼近式類比數位轉換器,本論文採用固定視窗機制去降低功率消耗並改善其非理想效應,例如電容陣列切換時電壓未完全穩定即進行比較造成誤判的問題、電容不匹配造成靜態效能變差、以及比較器的偏移電壓過大造成遺失碼的現象。另外還採用了直接切換技巧去降低介於數位邏輯控制到開關緩衝器的路徑延遲,以提升轉換器的操作速度。
此類比至數位轉換器是採用台積電90奈米1P9M互補式金氧半製程來實現,電路核心面積為0.117平方毫米,量測到的訊號雜訊失真比為 55.98 分貝,有效位元頻寬為三千五百萬赫茲,總功率消耗為2.72毫瓦。
This thesis presents a 12-bit 80-MS/s low power pipelined successive approximation register (SAR) analog-to-digital converter (ADC) with loading-free architecture. The basic idea of this work is manipulating the capacitor array of the second-stage SAR ADC to serve as the feedback capacitor of the first stage amplifier during its amplification mode. In addition to the saving in the occupied area of the total capacitor, such an arrangement reduces the power consumption of the used high performance operation amplifier as well, resulting in a low-power and compact ADC. Additionally, the fixed-window function technique is adopted to cut the power consumption and tolerate non-idealities in the first-stage SAR ADC, including the comparator’s erroneous judgments incurred by incomplete settling behavior during the capacitor array switching, large INL/DNL errors due to the capacitor mismatch, and missing codes induced by comparator offset. Moreover, the direct switching technique is also utilized to reduce the critical path delay between the digital control logic and switching buffers.
This proof-of-concept ADC is fabricated in TSMC standard low-power 90-nm 1P9M CMOS process with the active area of only 0.117 mm2. The measured peak SNDR is 55.98 dB and effective resolution bandwidth (ERBW) is 35 MHz. The total power consumption is 2.72 mW.
[1] TEXAS INSTRUMENTS Applications, http://www.ti.com
[2] J. F. Lin and S. J. Chang, “A 10-bit 60MS/s low-power pipelined ADC with split-capacitor CDS technique,” IEEE Transaction on Circuits and Systems II, pp. 163-167, Mar. 2010
[3] B. R. Gregoire and U. K. Moon, “An over-60 dB true rail-to-rail performance using correlated level and op-amp with only 30 dB loop gain,” IEEE J. Solid-State Circuits, pp. 2677-2687, Dec. 2007
[4] J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H. S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-State Circuits, pp. 2658-2668, Dec. 2006
[5] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. K. Moon, “Ring amplifiers for switched capacitor circuits,” IEEE J. Solid-State Circuits, pp. 2928-2942, Dec. 2012
[6] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50MS/s SAR ADC with a monotonic switching procedure,” IEEE J. Solid-State Circuits, pp. 731-740, Apr. 2010
[7] Y. Zhu, C. H. Chan, U. F. Chio, S. W. Sin, S. P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90nm CMOS,” IEEE J. Solid-State Circuits, pp. 1111-1121, Jun. 2010
[8] Y. Cheng, X. Zhu, H. Tamura, M. ibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split capacitor DAC mismatch calibration in successive approximation ADC,” IEEE Custom Integrated Circuits Conference, pp. 279-282, Sep. 2009
[9] C.C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conv. 10-bit 10MS/s Asynchronous SAR ADC in 0.18um CMOS,” IEEE Symposium on VLSI Circuits Dig. Tech. Paper, pp. 241-242, Jun. 2010
[10] G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, “10-bit 30-MS/s SAR ADC using switchback switching method,” IEEE Transaction on VLSI Systems II, pp. 584-588, Mar. 2013
[11] R. Wang, U. F. Chio, S. W. Sin, S. P. U, Z. Wang, and R. P. Martins, “A 12-bit 110MS/s 4-stage single-opamp pipelined SAR ADC with ratio-based GEC technique,” ESSCIRC, pp.265-268, Sept. 2012
[12] C. C Lee and M. P. Flynn, “A SAR-Assisted two-stage pipeline ADC,” IEEE J. Solid-State Circuits, pp.859-869, Apr.2011
[13] S. W. Sin, L. Ding, Y. Zhu, H. G. Wei, C. H. Chan, and U. F. Chio, “An 11b 60MS/s 2.1mW two-step time-interleaved SAR-ADC with reused S&H,” ESSCIRC, pp.218-221, Sept. 2010
[14] H. Y. Lee, B. Lee, and U. K. Moon, “A 31.3 fJ/conv. 70.4 dB SNDR 30 MS/s 1.2V two-step pipelined ADC in 0.13um CMOS,” IEEE International Solid-State Circuits Conference, pp. 474-476, Feb. 2012
[15] B. Ralf, W. Georg, and T. Roland, “Investigation of the thermal noise of MOS transistor under analog and RF operating conditions,”
[16] W. H. Yang, D. Kelly, I. Mehr, M. T. Sayuk, and L. Singer, “A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input,” IEEE J. Solid-State Circuits, pp.1931-1936, Dec.2002
[17] J. –B. Shyu, G. C. Temes, and K. Yao, “Random errors in MOS capacitors,” IEEE J. Solid-State Circuits, pp.1070-1076, Dec.1982
[18] B. –G. Lee, B. –M. Min, G. Manganaro, and J. W. Valvano, “A 14-b 100-MS/s pipelined ADC with a merged SHA and first MDAC,” IEEE J. Solid-State Circuits, pp.2613-2618, Dec.2008
[19] H. Y. Lee, “Power-efficient two-step pipelined analog-to-digital conversion,” Oregon State University, Ph.D. thesis, 2011
[20] H. C. Choi, Y. J. Kim, M. H. Lee, Y. L. Kim, and S. H. Lee, “A 12b 50MS/s 10.2mA 0.18um CMOS ADC with a fully differential class-AB switched OP-AMP,” IEEE Symp. On VLSI Circuits Dig. Tech. Papers, pp. 220-221, June 2008
[21] K. W. Hsueh, Y. K. Chou, Y. H. Tu, Y. F. Chen, Y. L. Yang, and H. S. Li, “A 1V 11b 200MS/s pipelined ADC with digital background calibration in 65nm CMOS,” In ISSCC Dig. Tech. Papers, pp. 546-634, Feb. 2008
[22] A. Panigada, and I. Galton “A 130mW 100MS/s pipelined ADC with 69dB SNDR enabled digital harmonic distortion correction,” In ISSCC Dig. Tech. Papers, pp. 162-163, Feb. 2009
[23] J. Mulder, Van der Goes, D. Vecchi, J. R. Westra, E. Ayranci, C. M. Ward, J. Wan, and K. Bult, “An 800MS/s dual-residue pipeline ADC in 40nm CMOS,” In ISSCC Dig. Tech. Papers, pp. 184- 186, Feb. 2011
[24] J. Wu, C. Y. Chen, T. Li, W. Liu, L. He, S. S. Tsai, B. Chen, C. S. Huang, J. J. Hung, W. T. Shih, H. Hung, S. Jaffe, L. Tan , and H. Vu “A 240mW 2.1GS/s 12b pipeline ADC using MDAC equalization,” IEEE CICC, pp. 1-4, Sept. 2012
[25] S. K. Shin, Y. S. You, S. H. Lee, K. H. Moon, J. W. Kim, L. Brooks, and H. S. Lee, “A fully-differential zero-crossing-based 1.2V 10b 26MS/s pipelined ADC in 65nm CMOS,” IEEE Symp. On VLSI Circuits Dig. Tech. Papers, pp. 218-219, June 2008
[26] L. Brooks, and H. S. Lee, “A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB,” In ISSCC Dig. Tech. Papers, pp.166-167, Feb. 2009
[27] L. Brooks, and H. S. Lee, “A zero-crossing based 12b 100MS/s pipelined ADC with decision boundary gap estimation calibration,” IEEE Symp. On VLSI Circuits Dig. Tech. Papers, pp. 237-238, June 2010
[28] S. K. Shin, J. C. Rudell, D. C. Daly, C. E. Munoz, D. Y. Chang, K. Gulati, H. S. Lee, and M. Z. Straayer, “A 12b 200MS/s frequency scalable zero-crossing based pipelined ADC in 55nm CMOS,” IEEE CICC, pp. 1-4, Sept. 2012
[29] C. C Lee and M. P. Flynn, “A SAR-Assisted two-stage pipeline ADC,” IEEE J. Solid-State Circuits, vol. 46,pp.859-869,Apr.2011
[30] S. W. Sin, L. Ding, Y. Zhu, H. G. Wei, C. H. Chan, and U. F. Chio, “An 11b 60MS/s 2.1mW two-step time-interleaved SAR-ADC with reused S&H,” ESSCIRC, pp.218-221, Sept. 2010
[31] A. Panigada, and I. Galton “A 130mW 100MS/s pipelined ADC with 69dB SNDR enabled digital harmonic distortion correction,” In ISSCC Dig. Tech. Papers, pp. 162-163, Feb. 2009
[32] I. Ahmed, “Pipelined ADC enhancement techniques,” Toronto University, Ph.D. thesis, 2008
[33] H. Y. Lee, B. Lee, and U. K. Moon, “A 31.3 fJ/conv. 70.4 dB SNDR 30 MS/s 1.2V two-step pipelined ADC in 0.13um CMOS,” IEEE International Solid-State Circuits Conference, pp. 474-476, Feb. 2012
[34] J. F. Lin and S. J. Chang, “A 10-bit 60-MS/s low-power pipelined ADC with split-capacitor CDS technique,” IEEE Trans. Circuits syst. II, pp. 163-167, Mar. 2010
[35] J. Carnes and U. K. Moon, “The effect of switch resistance on pipelined ADC MDAC settling time,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, pp. 5251-5254, May. 2006
[36] M. Miyahara and A. Matsuzawa, “The effect of switch resistances on pipelined ADC performances and the optimization for settling time,” IEICE TRANS Electron, June.2007
[37] G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, “A 1-uW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” IEEE International Solid-State Circuits Conference, pp. 2783-2795, Nov. 2012
[38] Y. Z. Lin, C. C. Liu, G. Y. Huang, Y. T. Shyu, Y. T. Liu, and S. J. Chang, “A 9-bit 150 MS/s sub-range ADC based on SAR architecture in 90-nm CMOS,” IEEE Transaction on Circuits and Systems I, pp. 570-581, Mar. 2013
[39] G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, “10-bit 30-MS/s SAR ADC using switchback switching method,” IEEE Transaction on VLSI Systems II, pp. 584-588, Mar. 2013
[40] AMD, “ Layout-dependent proximity effects in deep nano-scale CMOS,” Apr. 2009
[41] T. Oh, H. Venkatram, and U. K. Moon, “A 70MS/s 69.3dB SNDR 38.2fJ/conversion-step time-based pipelined ADC,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, May. 2013
[42] N. Dolev, M. Kramer, and B. Murmann, “A 12-bit, 200-MS/s, 11.5-mW pipeline ADC using a pulsed bucket brigade front-end,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, May. 2013
[43] B. Hershberg, and U. K. Moon, “A 75.9dB-SNDR 2.96mW 29fJ/conv-step ringamp-only pipelined ADC,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, May. 2013
[44] S. W. Chiang, H. Sun, and B. Razavi, “A 10-bit 800-MHz 19-mW CMOS ADC,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, May. 2013
[45] J. Kim, “Pipelined analog-to-digital conversion using class-AB amplifiers,” Stanford university, Ph.D. thesis, 2010
[46] B. Hershberg, “Ring amplification for switched capacitor circuits,” Oregon state university, Ph.D. thesis, 2012
[47] S. Chiang, “High-speed, low-power analog-to-digital converters,” University of California Los Angles, Ph.D. thesis, 2013
[48] S. S. Hashemi, “Analysis and design of high-speed ADCs,” University of California Los Angles, Ph.D. thesis, 2012
[49] P. J. Yu and H. S. Lee, “Accuracy limitations of pipelined ADCs,” IEEE International Symposium on VLSI Circuits Dig. Tech. Papers, vol. 3, pp. 1956-1959, May. 2005
[50] G. Nikandish and A. Medi, “Analysis of integral non-linearity errors in two-step analogue-to-digital converters,” IET Circuits, Device & Systems, 2012
[51] I. Ahmed, J. Mulder, and D. A. Johns, “A low-power capacitive charge pump based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 45, pp.1016-1027, Apr.2010
[52] B. D. Sahoo and B. Razavi, “A 10-b 1-GHz 33-mW CMOS ADC,” IEEE J. Solid-State Circuits, vol. 48, pp.1442-1452, Apr.2013
[53] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conversion-Step 10bit 10MS/s asynchronous SAR ADC in 0.18um CMOS,” IEEE International Symposium on VLSI Circuits Dig. Tech. Papers, pp. 241-242, June. 2010