簡易檢索 / 詳目顯示

研究生: 胡明全
Hu, Ming-Chung
論文名稱: 基於混合基因暨模擬退火法能感知繞線擁擠且考量電壓衰退之電源網路規劃法
Congestion-Aware Powerplanning Methodology Considering IR-Drop Constraint Based on the Hybrid GA-SA Algorithm
指導教授: 林家民
Lin, Jai-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 48
中文關鍵詞: 電源網路規劃可繞度電壓衰退混合基因暨模擬退火法
外文關鍵詞: Powerlanning, Routability, IR-drop, Hybrid GA-SA algorithm
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電源網路規劃在實體電路設計中成為越來越重要的議題,隨著製程的進步,在晶片裡的電路元件數量快速增加及連線複雜度大幅提升,會導致功率消耗更加嚴重及繞線困難增加。由於電源網路會佔據繞線資源,如果在電路元件擺置與細部繞線完成後,才去調整電源網路是很費時及費力的事情,因此如何在滿足電壓衰退與電遷移效應的限制下預留更多繞線資源,以利繞線階段使用是很重要的。由於早期的研究較少探討符合電壓衰退條件下的電源網路面積如合計算及預留更多繞線資源。因此,本論文提出一個電源網路規劃的流程,其主要分為兩部分,第一部分為提出如何計算在符合電壓衰退條件下的電源網路面積,第二部分則提出混合基因暨模擬退火法來調整電源限段之線寬及選擇更好的擺放位置,以達到更好的可繞度。實驗結果證明本論文的方法可以在符合電壓衰退條件下提升繞線階段的可繞度。

    Powerplanning is a crucial stage in the physical design. Due to advance in manufacture technology, the number of transistors in a chip increases dramatically which leads to higher power consumption and makes routing more difficult. Since a power network will occupy routing resource, it is very important to reduce routing area while satisfying IR-drop and electromigration constraint. However, most of previous works only minimize power routing area without considering routing congestion. Hence, in this thesis, we want to propose a powerplanning methodology which can consider routing congestion while satisfying IR-drop and electromigration constraint. Our powerplanning flow can be divided into two parts. The first part applies the bisection method to calculate proper area required for power stripes for satisfying IR-drop constraint. In the second part, we propose the hybrid GA-SA based algorithm to adjust widths of power stripes and search better positons of power stripes. The experimental results show that our method not only can satisfy the IR-drop constraint but also lead to higher routability.

    摘要 i 目錄 vi 表目錄 ix 圖目錄 x 第一章 簡介 1 1.1電源網路拓樸的演變與結構 2 1.1.1 電源環與模塊環 3 1.1.2 電源線段 3 1.1.3 電源軌道 4 1.2相關文獻探討 4 1.3動機 6 1.4研究貢獻 7 1.5論文架構 8 第二章 相關研究回顧 9 2.1高效能線寬 9 2.1.1非冗餘線寬 9 2.1.1高效能線寬 12 2.2動態規劃演算法基於繞線擁擠度的考量 13 2.2.1繞線擁擠程度的估計方法 13 2.2.2動態規劃演算法成本值的計算 15 2.2.3使用動態規劃演算法擺放電源線段 17 2.3基因演算法 18 2.3.1決定編碼 18 2.3.2原始族群 19 2.3.3適應性函數 19 2.3.4 基因擾動 19 第三章 電源網路優化設計方法 21 3.1 電源網路設計流程概述 21 3.2 二分法決定電源網路金屬層的總線寬 22 3.3 繞線擁擠度的修正 24 3.3.1繞線擁擠度估計修正 24 3.3.2 繞線擁擠度的計算修正 27 3.4 混合基因暨模擬退火演算法 29 3.4.1決定編碼 30 3.4.2原始族群 31 3.4.3適應性函數的計算 32 3.4.4基因擾動 32 3.5 檢查模塊開路及優化模塊上的電源線段最佳位置 35 第四章 實驗結果 38 4.1 混合基因暨模擬退火演算法的影響 39 4.2不同方法的可繞度與電壓衰退比較 40 第五章 結論 46 第六章 參考文獻 47

    [1] W.-H. Chang, M.C.-T. Chao and S.-H. Chen, “Practical Routability-Driven Design Flow for Multilayer Power Networks Using Aluminum-Pad Layer,” IEEE Trans. on VLSI Systems, vol. 22(5), pp. 1069-1081, Jun. 2013.
    [2] P. Falkenstern, Y. Xie, Y.-W Chang and Y. Wang, “Three-Dimensional Integrated Circuits (3D IC) Floorplan and Power/Ground Network Co-Synthesis,” in Proc. ASP-DAC, pp. 169-174, 2010.
    [3] C. Chu and Y.-C. Wong, “FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal Tree Algorithm for VLSI Design,” IEEE Trans. on CAD, vol. 27(1), pp. 70-83, Jan 2008.
    [4] John H. Holland, “Adaption in natural and artificial systems ,” The University Michigan Press, Ann Arbor , 1975.
    [5] C.-C. Huang, C.-T. Lin, W.-S. Liao, C.-J. Lee, H.-M. Chen, C.-H. Lee and D.-M. Kwai, “Improving Power Delivery Network Design by Practical Methodologies,” in Proc. ICCD, pp. 237-242, 2014.
    [6] S. Köse. E.-G. Friedman “Fast Algorithms for IR Voltage Drop Analysis Exploiting Locality,” in Proc. DAC, pp. 996-1001, 2011.
    [7] W.-P. Lee and Y.-W. Chang, “Post-Floorplanning Power/Ground Ring Synthesis for Multiple-Supply-Voltage Designs,” in Proc. ISPD, pp. 5-12, 2009.
    [8] C.-J. Lee, S.S.-Y. Liu, C.-C. Huang, H.-M. Chen C.-T. Lin and C.-H. Lee, “Hierarchical Power Network Synthesis for Multiple Power Domain Designs,” in Proc. ISQED, pp. 477-482, 2012.
    [9] S.S.-Y. Liu, C.-J. Lee, C.-C. Huang, H.-M. Chen, C.-T. Lin and C.-H. Lee, “Effective Power Network Prototyping via Statistical-Based Clustering and Sequential Linear Programming,” in Proc. DATE, pp. 1701-1706, 2013.
    [10] V. Sukharev, X. Huang, H.-B. Chen, S.-X.-D. Tan “IR-drop based electromigration assessment: Parametric failure chip-scale analysis,” in Proc. ICCAD, pp. 428-433, 2014.
    [11] X.-D.S. Tan and C.-J.R. Shi, “Fast Power/Ground Network Optimization Based on Equivalent Circuit Modeling,” in Proc. DAC, pp. 550-554, 2001.
    [12] X.-D. Tan, C.-J.R. Shi, D. Lungeanu, J.-C. Lee and L.-P. Yuan, “Reliability-Constrained Area Optimization of VLSI Power/Ground Networks via Sequence of Linear Programmings,” in Proc. DAC, pp. 78-83, 2003.
    [13] T.-Y. Wang and C.-C. Chen, “Optimization of the Power/Ground Network Wire-Sizing and Spacing Based on Sequential Network Simplex Algorithm,” in Proc. ISQED, pp. 157-162, 2002.
    [14] S.-W. Wu and Y.-W. Chang, “Efficient Power/Ground Network Analysis for Power Integrity Driven Design Methodology,” in Proc. DAC, pp. 177-180, 2004.
    [15] T.-C Weng, “A Routability-Driven Powerplanning Methodology Based on the Dynamic Programming Algorithm ,” thesis of department of electrical engineering national Cheng Kung university, 2015.
    [16] “https://www.apache-da.com/products/redhawk”
    [17] “http://www.cadence.com/products/di/soc_encounter/pages/default.aspx”
    [18] “https://www.synopsys.com/apps/support/training/iccompiler_fcd.html”
    [19] “http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeRail.aspx”
    [20] “http://www.globalfoundries.com”

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE