| 研究生: |
洪庭尉 Hong, Ting-Wei |
|---|---|
| 論文名稱: |
利用超級電容器儲能系統及高溫超導線圈於高壓直流傳輸系統連接混合離岸風場之穩定度分析 Stability Analysis of a Hybrid Offshore Wind Farm Connected to HVDC System with Supercapacitor Energy Storage System and High Temperature Superconducting Wire |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 超導同步發電機 、永磁式同步發電機 、超級電容器儲能系統 、高壓直流傳輸系統 、台電簡化系統 、穩定度 |
| 外文關鍵詞: | Superconducting synchronous generator, permanent-magnet synchronous generator, supercapacitor energy-storage system, high-voltage direct current system, Taipower system, stability |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係針對以超導同步發電機為基礎之離岸風場與以永磁式同步發電機為基礎之離岸風場做整合後,透過高壓直流傳輸系統分別連接至市電及台電簡化系統之兩種不同架構為研究目標,其中採用超級電容器儲能系統結合高溫超導線圈作為控制系統,以改善系統穩定度。本論文中所用的交直軸等效電路數學模型是假設系統於三相平衡的條件下所推導。本論文於穩態特性方面,分析了不同風速與傳輸線變動時對系統特性之影響,動態模擬方面完成了風速變動之模擬,暫態部分完成電網端電壓三相短路故障之模擬結果。由模擬結果分析得知,超級電容器儲能系統與高溫超導線圈之結合得以改善研究系統之功率潮流及穩定度。
This thesis presents stability analysis of an integration of a superconducting synchronous generator (SCSG)-based offshore wind farm (OWF) and a permanent-magnet synchronous generator (PMSG)-based OWF connected to a power grid through a high-voltage direct current (HVDC) system using a supercapacitor energy-storage system and a high temperature superconducting wire. The q-d axis equivalent-circuit model is derived to establish the complete system model under three-phase balance conditions. Steady-state analysis characteristics of the studied system under different values of wind speed and transmission line are examined. Dynamic and transient simulations of the studied system subject to a wind-speed disturbance and a three-phase fault at the power grid are also carried out. It can be concluded from the simulation results that the proposed energy-storage systems can offer better effects on power-flow control and stability improvement of the studied system, while the system stability can also be further improved when the lead-lag damping controller is in service.
[1] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
[2] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York: McGraw-Hill, 1994.
[3] H. Saadat, Power System Analysis, New York: McGraw-Hill, 2002.
[4] 台灣電力公司,http://www.taipower.com.tw, retrieved date: Apr. 30, 2015.
[5] 經濟部能源局,http://www.moeaboe.gov.tw/, retrieved date: May 1, 2015.
[6] 江榮城,台灣風力發電運轉經驗及未來展望,環保資訊月刊,第九十七期,第11-18頁, 2006年5月。
[7] 余勝雄,我國風力發電現況及展望,永續產業發展雙月刊,第三十五期,第16-21頁,2007年10月。
[8] W.-S. Kao, C.-T. Huang, and C.-Y. Chiou, “Dynamic load modeling in Taipower system stability studies,” IEEE Trans. Power Systems, vol. 10, no. 2, pp. 907-914, May 1995.
[9] T. Nam, J. W. Shim, and K. Hur, “The beneficial role of SMES coil in DC lines as an energy buffer for integrating large scale wind power,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, p. 5701404, Jun. 2012.
[10] T. Nam, J. W. Shim, and K. Hur, “Design and operation of double SMES coils for variable power system through VSC-HVDC connections,” IEEE Trans. Applied Superconductivity, vol. 23, no. 3, p. 5701004, Jun. 2013.
[11] R. E. Torres-Olguin, M. Molinas, and T. Undeland, “Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission,” IEEE Trans. Sustainable Energy, vol. 3, no. 4, pp. 899-907, Oct. 2012.
[12] R. E. Torres-Olguin, M. Molinas, and T. Undeland, “Integration of offshore wind farm using a hybrid HVDC transmission composed by the PWM current-source converter and line-commutated converter,” IEEE Trans. Energy Conversion, vol. 28, no. 1, pp. 125-134, Mar. 2013.
[13] W. Lin, J. Wen, L. Seca, J. Liang, S. Cheng, M. Yao, and N. Li, “A three-terminal HVDC system to bundle wind farms with conventional power plants,” IEEE Trans. Power Systems, vol. 28, no. 3, pp. 2292-2300, Aug. 2013.
[14] J. G. Slootweg and W. L. Kling, “Aggregated modelling of wind parks in power system dynamics simulations,” in Proc. IEEE Power Tech Conference, Bologna, Italy, Jun. 23-26, 2003.
[15] G.-H. Kim, N. Kim, K.-M. Kim, M. Park, I.-K. Yu, S. Lee, and T.-J. Park, “EMTDC based simulation of 10 MW class grid-connected superconducting wind turbine generator,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, p. 5202105, Jun. 2012.
[16] N. Kim, G.-H. Kim, K.-M. Kim, M. Park, I.-K. Yu, S. Lee, E. Song, and T.-W. Kim, “Comparative analysis of 10 MW class geared and gearless type superconducting synchronous generators for a wind power generation system,” IEEE Trans. Applied Superconductivity, vol. 22, no. 3, p. 5202004, Jun. 2012.
[17] R. Bharanikumar, V. Kandasamy, M. P. Maheswari, and A. N. Kumar, “Steady state analysis of wind turbine driven PM generator with power converters,” in Proc. 2008 Int. Emerging Trends in Engineering and Technology Conference, Nagpur, Maharashtra, Jul. 18-19, 2008, pp. 922-926.
[18] L. Qu and W. Qiao, “Constant power control of DFIG wind turbines with supercapacitor energy storage,” IEEE Trans. Industry Applications, vol. 47, no. 1, pp. 359-367, Jan./Feb. 2011.
[19] N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944-953, Mar. 2014.
[20] P. K. Ray, S. R. Mohanty, N. Kishor, and A. Mohanty, “Small-signal analysis of hybrid distributed generation system with HVDC-link and energy storage elements,” in Proc. 2009 2nd International Conference on Emerging Trends in Engineering and Technology, Nagpur, India, Dec. 16-18, 2009, pp. 1-6.
[21] L. G. Franquelo and J. I. Leon, “How power electronics contribute to the current energy arena,” in Proc. 2013 7th IEEE GCC Conference and Exhibition, Doha, Qatar, Nov. 17-20, 2013, pp. 165-171.
[22] F. A. Inthamoussou, J. Pegueroles-Queralt, and F. D. Bianchi, “Control of a supercapacitor energy storage system for microgrid applications,” IEEE Trans. Energy Conversion, vol. 28, no. 3, pp. 690-697, Sep. 2013.
[23] A. H. M. A. Rahim and E. P. Nowicki, “Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system,” Energy Conversion and Management, vol. 59, pp. 96-102, Jul. 2012.
[24] C. Abbey and G. Joos, “Supercapacitor energy storage for wind energy applications,” IEEE Trans. Industry Applications, vol. 43, no. 3, pp. 769-776, May/Jun. 2007.
[25] Y. Zhang and A. Bose, “Design of wide-area damping controllers for inter-area oscillations,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1136-1143, Aug. 2008.
[26] A. M. A. Hamdan, “Geometric measures of modal controllability and observability of power system models,” Electric Power Systems Research, vol. 15, no. 2, pp. 147-155, Oct. 1988.
[27] R. Sadikovic, P. Korba, and G. Andersson, “Application of FACTS devices for damping of power system oscillations,” in Proc. IEEE Power Tech conference, St. Petersburg, Russia, Jun. 27-30, 2005, pp.1-6.
[28] L. Wang and T. M. Sa-Nguyen, “Comparisons of damping controllers for stability enhancement of an offshore wind farm fed to an OMIB system through an LCC-HVDC link,” IEEE Trans. Power Systems, vol. 28, no. 2, pp. 1870-1878, May 2013.
[29] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, no. 12, pp. 3791-3795, Dec. 1983.
[30] E. Tara, S. Filizadeh, J. Jatskevich, E. Dirks, A. Davoudi, M. Saeedifard, K. Strunz, and V. K. Sood, “Dynamic average-value modeling of hybrid-electric vehicular power systems,” IEEE Trans. Power Delivery, vol. 27, no. 1, pp. 430-438, Jan. 2012.
[31] Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, Dec. 1997.
[32] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind park s in power sysyem,” in Proc. IEEE Power Tech conference, Bologna, Italy, Jun. 23-26, 2003.
[33] S. M. Osheba, M. A. A. S. Alyan, and Y. H. A. Rahim, “Comparison of transient performance of superconducting and conventional generators in a multimachine system,” IEEE Trans. Power Apparatus and Systems, vol. 135, no. 5, pp. 385-396, Sep. 1988.
[34] S. D. Umans, “Transient performance of a high-temperature- superconducting generator,” in Proc. 2009 IEEE International Electric Machines & Drives Conference, Miami, Florida, USA, May 6, 2009, pp. 451-457.
[35] H. Zhang, S. Cao, S. Wang, and F. Yu, “The analysis of steady-state characteristics of doubly-fed induction generator,” in Proc. 2010 IEEE International Advanced Management Science Conference, Chengdu, China, Jul. 9-11, 2010, pp. 195-197.
[36] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless output maximization control for variable-speed wind generation system using IPMSG,” IEEE Trans. Industry Applications, vol. 41, no. 1, pp. 60-67, Jan. 2005.
[37] A. Mesemanolis, C. Mademlis, and I. Kioskeridis, “Maximum efficiency of a wind energy conversion system with a PM synchronous generator,” in Proc. 2010 Power Generation, Transmission, Distribution, and Energy Conversion Conference, Agia Napa, Cyprus, Nov. 7-10, 2010, pp. 1-9.
[38] P. Kundur, M. Klein, G. J. Rojers, and M. Zwyno, “Applications of power system stabilizers for enhancement of overall system stability,” IEEE Trans. Power Systems, vol. 4, no. 2, pp. 614-622, May 1989.
[39] G. H. Kim, N. Kim, K. M. Kim, M. Park, I. K. Yu, S. Lee, and T. J. Park, “Control scheme of a superconducting synchronous generator applied to a grid-connected wind power generation system,” in Proc. 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Changwon, South Korea, Oct. 24-25, 2012, pp. 1-4.
[40] M. Klein, G. J. Rogers, and P. Kundur, “A fundamental study of inter-area oscillations in power systems,” IEEE Trans. Power Systems, vol. 6, no. 3, pp. 914-921, Aug. 1991.
[41] J. L. Dominguez-Garcia, F. D. Bianchi, and O. Gomis-Bellmunt, “Control signal selection for damping oscillations with wind power plants based on fundamental limitations,” IEEE Trans. Power Systems, vol. 28, no. 4, pp. 4274-4281, Nov. 2013.
[42] A. Heniche and I. Kamwa, “Assessment of two methods to select wide-area signals for power system damping control,” IEEE Trans. Power Systems, vol. 23, no. 2, pp. 572-581, May 2008.
[43] N. Yang, Q. Liu, and J. D. Mccalley, “TCSC controller design for damping inter-area oscillations,” IEEE Trans. Power Systems, vol. 13, no. 4, pp. 1304-1310, Nov. 1998.
[44] M. E. Aboul-Ela, A. A. Sallam, J. D. Mccalley, and A. A. Fouad, “Damping controller design for power system oscillations using global signals,” IEEE Trans. Power Systems, vol. 11, no. 2, pp. 767-773, May 1996.
[45] N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, “VSC-based HVDC power transmission systems: An overview,” IEEE Trans. Power Electronics, vol. 24, no. 3, pp. 592-602, Mar. 2009.
[46] M. G. Molina, “Distributed energy storage systems for applications in future smart grids,” in Proc. 2012 6th IEEE/PES Transmission and Distribution: Latin America Conference and Exposition, Montevideo, Uruguay, Sep. 3-5, 2012, pp. 1-7.
[47] S.-Y. Lu, “Hevajra teaches essentials of secret practice and exploitation of energy from earth, water, fire, and wind,” Living Buddha Lian-sheng Sheng-yen Lu Dharma Talk on September 7th, 2008 at True Buddha Rainbow Temple, WA, USA. (http://tbsn.org/chinese3/news.php?cid=29&csid=42&id=1129, retrieved date: May 7, 2015).
[48] 李浩文,利用超導儲能系統以及整合型功率潮流控制器於整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,民國一百年七月。
[49] 謝旻翰,利用超導儲能系統及高壓直流輸電系統於混合超導同步發電機與雙饋式感應發電機之風力發電系統之穩定度改善,國立成功大學電機工程學系碩士論文,2013年7月。
[50] 羅得銘,含整合風能與波浪發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2013年7月。
[51] 柯舜誌,利用統一功率潮流控制器於混合離岸式風場連接至台電簡化系統之穩定度分析,國立成功大學電機工程學系碩士論文,2014年7月。
[52] 張哲豪,利用靜態同步補償器於多機電力系統連接整合陸域與離岸風場之穩定度改善分析,國立成功大學電機工程學系碩士論文,2014年7月。
[53] 楊智皓,多端饋入式混合高壓直流傳輸系統連接離岸式風場之穩定度分析,國立成功大學電機工程學系碩士論文,2014年7月。
校內:2025-01-01公開