簡易檢索 / 詳目顯示

研究生: 曾姿嘉
Zeng, Zih-Jia
論文名稱: 以模型預測直接轉矩控制法降低永磁馬達之轉矩漣波
Model Predictive Direct Torque Control of a Permanent Magnet Synchronous Motor for Torque Ripple Reduction
指導教授: 蔡明祺
Tsai, Mi-Ching
共同指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 53
中文關鍵詞: 永磁馬達直接轉矩控制模型預測控制
外文關鍵詞: PMSM, DTC, MPC, torque ripple
相關次數: 點閱:127下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 永磁馬達之傳統直接轉矩控制(Conventional Direct Torque Control, DTC),控制架構簡單、轉矩響應快速,在負載快速變動的應用場域極具優勢,但也由於其採用簡單的磁滯查表法,對轉矩與定子磁交鏈都不是精準控制,導致轉矩漣波過大,也造成切換不定頻,產生的電磁干擾(Electromagnetic Interference, EMI)較難處理。於是本文將模型預測控制法(Model Predictive Control, MPC)引入直接轉矩控制之中,以馬達在alpha eta靜止兩相座標系下的數學模型,預測施加各基本電壓向量控制馬達,產生之未來時刻相應轉矩與磁交鏈,利用目標函數取代傳統直接轉矩控制的磁滯查表,準確決定合適的電壓向量輸出,實際控制馬達運轉,並加入脈波寬度調變,控制電壓向量作用的時間長度,使其趨近定頻切換,更大幅下修轉矩漣波。
    由實驗結果證明本文策略確實提高轉矩精度,且轉矩響應速度高於磁場導向向量控制(Field Oriented Control, FOC),並降低平均開關切換頻率,減少功率電晶體的切換損失。

    This dissertation presents an improved model predictive control (MPC) strategy to reduce the torque ripple and commutation frequency in conventional direct torque control (DTC) of the permanent magnet synchronous motor (PMSM). Nowadays, DTC has been widely used in industrial applications thanks to its simple structure and high dynamic performances. However, hysteresis controllers cause high torque ripple and variable switching frequency. In this novel method, hysteresis controllers and the switching table are replaced with a model predictive controller base online optimization for the selection of voltage space vector among the possible ones. Furthermore, a pre-selective process is designed to filter out the inappropriate voltage vectors to reduce the computational burden caused by the eight basic voltage space vectors. Then apply duty ratio modulation to determine the operating time of the selected voltage vector and zero voltage vector in one sample period for torque ripple reduction. By implementing the proposed DTC, torque ripple is reduced and the approximated switching frequency can be minimized to retain the advantages of a conventional DTC; meanwhile, the torque response is still quick. Both simulation and experimental results exhibit the effectiveness of this proposed approach.

    中文摘要 I 目錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1研究動機與目的 1 1.2研究背景與文獻回顧 3 1.3本文架構 9 第二章 模型預測法應用於直接轉矩控制 10 2.1 模型預測法 10 2.2 傳統模型預測直接轉矩控制 11 2.3 改進模型預測直接轉矩控制 18 第三章 MATLAB與硬體在環迴路模擬 24 3.1 MATLAB模擬 24 3.2 硬體在環迴路系統模擬 26 3.2.1微處理器延時補償 28 3.3 MATLAB模擬結果討論 29 3.4 硬體在環迴路模擬結果討論 34 第四章 實驗設計與結果分析及討論 40 4.1 實驗硬體設備 40 4.2 實測馬達驅動結果驗證 42 第五章 結論與未來建議 48 5.1 結論 48 5.2 未來建議 49 參考文獻 51

    [1]H. Kawai and Y. Tasaka, "Evaluation of the energy-saving performance of the PMSM drive system," The 2010 International Power Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp. 1605-1608.
    [2]M. Morimoto, K. Sumito, S. Sato, K. Oshitani, M. Ishida and S. Okuma, "High efficiency, unity power factor VVVF drive system of an induction motor," in IEEE Transactions on Power Electronics, vol. 6, no. 3, pp. 498-503, July 1991.
    [3]W. Kim, C. Yang and C. C. Chung, "Design and Implementation of Simple Field-Oriented Control for Permanent Magnet Stepper Motors Without DQ Transformation," in IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 4231-4234, Oct. 2011.
    [4]I. Takahashi and T. Noguchi, "A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor," in IEEE Transactions on Industry Applications, vol. IA-22, no. 5, pp. 820-827, Sept. 1986.
    [5]G. Andreescu, C. I. Pitic, F. Blaabjerg and I. Boldea, "Combined Flux Observer With Signal Injection Enhancement for Wide Speed Range Sensorless Direct Torque Control of IPMSM Drives," in IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 393-402, June 2008.
    [6]K. D. Hoang and H. K. A. Aorith, "Online Control of IPMSM Drives for Traction Applications Considering Machine Parameter and Inverter Nonlinearities," in IEEE Transactions on Transportation Electrification, vol. 1, no. 4, pp. 312-325, Dec. 2015.
    [7]K. Jun-Koo and S. Seung-Ki, "Analysis and prediction of inverter switching frequency in direct torque control of induction machine based on hysteresis bands and machine parameters," Industrial Electronics, IEEE Transactions on, vol. 48, pp. 545-553, 2001.
    [8]K. Gulez, A. A. Adam and H. Pastaci, "A Novel Direct Torque Control Algorithm for IPMSM With Minimum Harmonics and Torque Ripples," in IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 223-227, April 2007.
    [9]Y. Ren and Z. Q. Zhu, "Reduction of Both Harmonic Current and Torque Ripple for Dual Three-Phase Permanent-Magnet Synchronous Machine Using Modified Switching-Table-Based Direct Torque Control," in IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6671-6683, Nov. 2015.
    [10]C. Xia, S. Wang, Z. Wang and T. Shi, "Direct Torque Control for VSI–PMSMs Using Four-Dimensional Switching-Table," in IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5774-5785, Aug. 2016.
    [11]Y. Zhang, J. Zhu, W. Xu and Y. Guo, "A Simple Method to Reduce Torque Ripple in Direct Torque-Controlled Permanent-Magnet Synchronous Motor by Using Vectors With Variable Amplitude and Angle," in IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2848-2859, July 2011.
    [12]G. Foo and M. F. Rahman, "Sensorless Direct Torque and Flux-Controlled IPM Synchronous Motor Drive at Very Low Speed Without Signal Injection," in IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 395-403, Jan. 2010.
    [13]S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo and M. Norambuena, "Model Predictive Control for Power Converters and Drives: Advances and Trends," in IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 935-947, Feb. 2017.
    [14] F. Morel, X. Lin-Shi, J. Retif, B. Allard and C. Buttay, "A Comparative Study of Predictive Current Control Schemes for a Permanent-Magnet Synchronous Machine Drive," in IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2715-2728, July 2009.
    [15]T. Türker, U. Buyukkeles and A. F. Bakan, "A Robust Predictive Current Controller for PMSM Drives," in IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3906-3914, June 2016.
    [16]Y. Yan, S. Wang, C. Xia, H. Wang and T. Shi, "Hybrid Control Set-Model Predictive Control for Field-Oriented Control of VSI-PMSM," in IEEE Transactions on Energy Conversion, vol. 31, no. 4, pp. 1622-1633, Dec. 2016.
    [17]L. Rovere, A. Formentini, A. Gaeta, P. Zanchetta and M. Marchesoni, "Sensorless Finite-Control Set Model Predictive Control for IPMSM Drives," in IEEE Transactions on Industrial Electronics, vol. 63, no. 9, pp. 5921-5931, Sept. 2016.
    [18]P. Cortes et al., "Guidelines for weighting factors design in Model Predictive Control of power converters and drives," 2009 IEEE International Conference on Industrial Technology, Gippsland, VIC, 2009, pp. 1-7.
    [19]C. I. Pitic, G. -. Andreescu, F. Blaabjerg and I. Boldea, "IPMSM motion-sensorless direct torque and flux control," 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005., Raleigh, NC, 2005.
    [20]S. Liu, W. Huang, X. Lin, Y. Zhao, W. Jiang and J. Yang, "Maximum Torque per Ampere Control Based on Active Flux Concept for DTC of IPMSMs," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, 2018, pp. 6558-6562.
    [21]A. Shinohara, Y. Inoue, S. Morimoto and M. Sanada, "Direct Calculation Method of Reference Flux Linkage for Maximum Torque per Ampere Control in DTC-Based IPMSM Drives," in IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2114-2122, March 2017.
    [22]吳昇澤、蔡明祺, "永磁同步馬達d-q軸電感量測原理推導與實測," 馬達電子報 第781期, 2018.
    [23]D. F. Griffiths and D. J. Higham, 'Euler’s Method,' in Numerical Methods for Ordinary Differential Equations, Springer, London, 2010, pp. 19-31
    [24]凱登智動科技, "MR series說明書," https://www.gathertech.net/, 2018.
    [25]劉子瑜、鄭銘揚, "基於弦波電流驅動於永磁同步馬達電流迴路控制 之研究," 2009.
    [26]F. Niu, B. Wang, A. S. Babel, K. Li and E. G. Strangas, "Comparative Evaluation of Direct Torque Control Strategies for Permanent Magnet Synchronous Machines," in IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1408-1424, Feb. 2016.

    下載圖示 校內:2020-06-26公開
    校外:2021-06-26公開
    QR CODE