| 研究生: |
曾致齊 Tseng, Chi-Chih |
|---|---|
| 論文名稱: |
鰭式氮化鋁鎵/氮化鎵高電子移動率場效電晶體之研究 Investigation of AlGaN/GaN MOS-FinHEMT |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
劉漢胤
Liu, Han-Yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 氮化鋁鎵/氮化鎵 、鰭式 、高電子遷移率電晶體 、超音波熱裂解噴霧沉積 、氯離子摻雜 、氟離子摻雜 、閘汲極間距 |
| 外文關鍵詞: | AlGaN/GaN, fin, high electron mobility transistor, ultrasonic spraypyrolysis deposition, oxide doped chlorine, oxide doped fluorine, gate-drain spacings |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究不同閘汲極間距並應用超音波熱裂解噴霧法沉積摻雜氯離子及氟離子之氧化鋁於鰭式氮化鋁鎵/氮化鎵高電子遷移率場效電晶體之研究,並比較平面式結構與鰭式結構間的差異,以研究閘汲極間距對元件特性的影響並判斷出最佳的元件設計參數。
為了解超音波熱裂解噴霧法沉積摻雜氯離子及氟離子氧化鋁之氧化層組成,本論文中將採用化學分析電子光譜儀、穿透式電子顯微鏡、原子力顯微鏡來進行量測與探討。從化學分析電子光譜儀分析出的結果中可以證實氧化層中的化學成分組成為氧化鋁。穿透式電子顯微鏡的分析結果中觀察到超音波熱裂解噴霧法沉積之氧化鋁在鰭式通道的側壁部分仍保有良好的階梯覆蓋度及薄膜均勻度。採用原子力顯微鏡可以分析氧化層薄膜之粗糙度和均勻度,結果顯示未摻雜之氧化鋁粗糙度為0.95奈米、摻雜氯離子之氧化鋁粗糙度為0.9奈米、摻雜氟離子之氧化鋁粗糙度為1.05奈米。在設計方面,將鰭式結構應用進三-五族的元件中,相較於傳統型的結構,此作法能極大的降低次臨界導通對元件的不良影響、提升閘極對通道的控制能力,而三-五族自我加熱效應導致特性衰減的問題在此結構可獲得改善,另外我們發現鰭式結構可以提升二維電子雲的驅動量並進一步提升元件的閘極控制能力。
在本論文中,蕭特基鰭式結構閾值電壓為-5.3伏特,未摻雜氧化鋁之鰭式結構閾值電壓為-5.7伏特、摻氯離子之氧化鋁鰭式結構閾值電壓為-3伏特、摻氟離子之氧化鋁鰭式結構閾值電壓為-4.5伏特,應用摻氯離子之氧化鋁可使閾值電壓往正偏移動約to 2.7伏特。基於三-五族材料多應用在高功率元件上,我們設計閘汲極為3μm、5μm、7μm三種不同的間距,在閘汲極為7μm會有最好的崩潰電壓表現但電流特性表現較差,而在閘汲極為3μm時,電流表現最佳但崩潰電壓則最差。此外,不同的閘汲極間距製作出的元件可以應用在不同的商業需求上。
This thesis proposed the investigation of different gate-drain spacings and the effects of halogen doping aluminum oxide (Al2O3) on the AlGaN/GaN fin structure high electron mobility transistors (HEMTs). Compared the difference between the planar structure and fin structure, we study the influence of gate drain spacings to find the best device characteristics.
In order to understand the composition of oxide layer doped with chloride ion and fluorine ion, we utilized the electron spectroscopy for chemical analysis (ESCA), transmission electron microscopy (TEM), atomic force microscopy (AFM) in the research. By the transmission electron microscope (TEM) analysis results, we observed that the thickness of aluminum oxide (Al2O3) deposited by the ultrasonic pyrolysis spray method still had good step coverage and film uniformity in the sidewall portion of the fin channels. The roughness and uniformity of the oxide film were analyzed by atomic force microscopy (AFM). The results showed that the un-doped Al2O3 had a roughness of 0.95 nm, the roughness of Al2O3 doped with chloride ions (Cl-) is 0.9 nm and the roughness of Al2O3 doped with fluorine ions (F-) is 1.05 nm.
The fin-type structure is applied to the III-V compound materials, which can greatly reduce the effect of the subthreshold swing and drain-induced barrier lowing (DIBL). In addition, we find that the fin-type structure can increase the driving force of the two-dimensional electron gas and further enhance the gate controllability of the devices. Furthermore, self-heating effect of the III-V compound materials will be improved by the fin structure.
In our research, the Schottky fin-type structure has a threshold voltage of -5.3 V, the fin-type structure with un-doped Al2O3 has a threshold voltage of -5.7 V, the fin-type structure with Al2O3:Cl has a threshold voltage of -3 V, and the fin-type structure with Al2O3:F has a threshold voltage of -4.5 V. The results show that the Al2O3:Cl and Al2O3:F can move the threshold voltage from -6V to -3V and -4.5V, respectively. Based on the application of III-V compound materials on high power devices, we designed three different length of gate-drain (LGD) =3,5,7 μm, the LGD of 7 μm will have the best performance of breakdown voltage, when the LGD is 3 μm, the current is the best, but the breakdown voltage is the worst. In addition, different gate-drain spacings can be applied on different device requirements.
[1] M. Kameche, N. V. Drozdovski, “GaAs-, InP-, and GaN HEMT-based Microwave Control Devices: What is Best and Why,” Microwave J., vol. 48, no. 5, pp. 64-180, 2005.
[2] Y. K. Lin, S. Noda, C. C. Huang, H. C. Lo, C. H. Wu, Q. H. Luc, P. C. Chang, and H. T. Hsu, “High-Performance GaN MOSHEMTs Fabricated with ALD Al2O3 Dielectric and NBE Gate Recess Technology for High Frequency Power Applications,” IEEE Electron Device Lett., vol. 38, no. 6, pp. 771-774, 2017.
[3] H. Y. Wang, Z. T. Li, W. L. Wang, G. Q. Li, and J. H. Luo, “Growth mechanisms of GaN epitaxial films grown on ex situ low-temperature AlN templates on Si substrates by the combination methods of PLD and MOCVD,” J. Alloys Compd., vol. 38, pp. 28-35, 2017.
[4] S. Basu, K. S. P, P. W. Sze, and Y. H. Wang,“AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” J. Electrochem. Soc., vol. 157, no. 10, pp. 947-951, 2010.
[5] K. Uneo, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, and H. Takagi, “Field-effect transistor on SrTiO3 with sputtered Al2O3 gate insulator,” Appl. Phys. Lett., vol. 83, no.9, pp. 1755-1757, 2003.
[6] H. Y. Liu, W. C. Ou, and W. C. Hsu, “Investigation of Post Oxidation Annealing Effect on H2O2-Grown-Al2O3/AlGaN/GaN MOSHEMTs,” IEEE J ELECTRON DEVI., vol. 4, no. 5, pp. 358-364, 2016.
[7] T. Kubo, M. Miyoshi, and T. Egawa, “Post-deposition annealing effects on the insulator/semiconductor interfaces of Al2O3 /AlGaN/GaN structures on Si substrates,” Semicond. Sci. Technol., vol. 32, no. 6, pp. 1-5, 2017.
[8] Y. F. Chen, F. R. Chen, and C. H. Tsai, “Compositional Effect of precursor Solution on Formation of Aluminum Oxide Passivation Layer Using Ultrasonic Spray Pyrolysis Deposition,” Department of Engineering and System Science, National Tsing Hua University., 2011.
[9] François Léonard, J. Tersoff, “Role of Fermi-Level Pinning in Nanotube Schottky Diodes,” Phys.Rev.Lett., vol. 84, no. 20, pp. 4693-4696, 2000.
[10] S. Thompson, P. Packan, and M. Bohr,“MOS Scaling: Transistor Challenges for the 21st Century,” Intel Technology Journal., pp. 1-19, 1998.
[11] J. Wu, E. Rosenbaum, B. MacDonald, E. Li, J. Tao, B. Tracy, and P. Fang,“Anode Hole Injection versus Hydrogen Release: The Mechanism for Gate Oxide Breakdown,” IEEE Xplore., pp. 27-32, 2000.
[12] G. Pei, J. Ked, P. Old, and K. ECC,“FinFET Design Considerations Based on 3-D Simulation and Analytical Modeling,” IEEE Trans. Electron Devices., vol. 49, no. 8, pp. 1411-1419, 2002.
[13] Y. C. Choi, M. Pophristic, H. Y. Cha, Boris Peres, Michael G. Spencer, and Lester F. Eastman, “The Effect of an Fe-doped GaN Buffer on OFF-State Breakdown Characteristics in AlGaN/GaN HEMTs on Si Substrate,” IEEE Trans. Electron Devices., vol. 53, no. 12, pp. 2926-2931, 2006.
[14] B. Lu, E. Mat, T. Pal, “Tri-Gate Normally-Off GaN Power MISFET,” IEEE Electron Devices Lett., vol. 33, no. 3, pp. 360-362, Jul. 2012.
[15] T. J. Anderson, V. D. Wheeler, D. I. Shahin, M. J. Tadjer, A. D. Koehler, K. D. Hobart, A. C. Christou, F. J. Kub, and Charles R. Eddy. Jr, “Enhancement mode AlGaN/GaN MOS high-electron-mobility transistors with ZrO2 gate dielectric deposited by atomic layer deposition,” Applied Physics express., vol. 9, no. 7, pp. 071003-1-071003-3, 2016.
[16] O. Seok, W. Ahn, M. K. Han, and M. W. Ha, “High on/off current ratio AlGaN/GaN MOS-HEMTs employing RF sputtered HfO2 gate insulators,” Semicond Sci Tech., vol. 28, no. 2, pp. 1-6, 2013.
[17] Y. W. Jo, D. H. Son, C. H. Won, K. S. Im, J. H. Seo, I. M. Kang, and J. H. Lee, “AlGaN/GaN FinFET With Extremely Broad Transconductance by Side-Wall Wet Etch,” IEEE Electron Devices Lett ., vol. 36, no. 10, pp. 1008-1010, 2015.
[18] H. Y. Liu, C. W. Lin, W. C. Hsu, C. S. Lee, M. H. Chiang, W. C. Sun, S. Y. Wei, and S. M. Yu, “Integration of Gate Recessing and In Situ Cl- Doped A2O3 for Enhancement-Mode AlGaN/GaN MOSHEMTs Fabrication,” IEEE Electron Devices Lett., vol. 38, no. 1, pp. 91-94, 2017.
[19] S. M. Sze, K. K. Ng, “Physics of Semiconductor Devices 3rd edition,” JOHN WILEY & SON., 2007.
[20] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 1999.
[21] H. P. Maruska, J. J. Tietjen, “The Preparation and Properties of Vapor-deposited Single Crystalline GaN,” Appl. Phys. Lett., vol. 15, no. 10, pp. 327-329, 1969.
[22] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-face AlGaN/GaN Heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 1999.
[23] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-nitrides: Growth, Characterization, and Properties,” J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, 2000.
[24] R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, “Electron transport in AlGaN–GaN Heterostructures Grown on 6H–SiC Substrates,” Appl. Phys. Lett., vol. 72, no. 6, pp. 707-709, 1998.
[25] T. B. Wang, “Improved Nitride-based Optical and Electrical Devices,” Ph.D. Thesis, National Cheng-Kung University, 2007.
[26] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and Piezoelectric Polarization Effects on The Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Trans. Electron Devices., vol. 48, no. 3, pp. 450-457, Mar. 2001.
[27] M. Kocan, “AlGaN/GaN MBE 2DEG heterostructures: interplay between surface-, interface- and device –properties,” PhD. thesis, University of Aachen RWTH, 2003.
[28] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Mircoscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, 1986.
[29] Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic Force Mircoscope-Force Mapping and Profiling on a Sub 100 Å Scale,” Appl. Phys. Lett., vol. 61, pp. 4723-4729, 1987.
[30] J. C. Vickerman, “Surface Analysis-the Principal Techniques,” John Wiley & Son, 2000.
[31] B. G. Yacobi, “Semiconductor Materials: an Introduction to Basic Principles,” Kluwer Academic., 2003.
[32] E. Hall, “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics., vol. 2, no. 3, pp. 287–292, 1879.
[33] B. G. Yacobi, “Semiconductor Materials: an Introduction to Basic Principles,” Kluwer Academic, 2003.
[34] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, “GaN Metal-oxide-semiconductor High-electron-mobility-transistor with Atomic Layer Deposited Al2O3 as Gate Dielectric,” Appl. Phys. Lett., vol. 86, pp. 063501, 2005.
[35] E. H. Nicollian, J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” New York: Wiley., 1982.
[36] S. J. Chang, J. G. Hwu, “Comprehensive Study on Negative Capacitance Effect Observed in MOS(n) Capacitors With Ultrathin Gate Oxides,” IEEE Trans. Electron Devices., vol. 58, no. 3, pp. 684-690, 2011.
[37] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices., vol. 48, no. 3, pp. 560-566, 2001.
[38] M. K. Chattopadhyay, S. Tokekar, “Temperature and Polarization Dependent Polynomial Based Non-linear Analytical Model for Gate Capacitance of AlmGa1-mN/GaN MODFET,” Solid-State Elctron., vol. 50, no. 2, pp. 220-227, 2006.
[39] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Thermal-Stability Improvement of a Sulfur-Passivated InGaP/InGaAs/GaAs HFET,” IEEE Trans. on Device and Materials Reliability., vol. 6, no. 1, pp. 52-59, 2006.
[40] F. Schwierz, J. J. Liou, “Modern microwave transistors theory, design, and performance,” Wiley-Interscience., 2003.
[41] F. N. Hooge, T. G. Kleinpenning, and L. K. J. Vandamme, “Experiment studies on1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479-532, 1981.
[42] J. Sikula, M. Levinshtein, “Advanced experimental methods for noise research in nanoscale electronics devices,” Springer Science., 2005.
[43] A. Balandin, S. V. Morozov, S. Cai, R. Li, and K. L. Wang, “Low flicker-noise GaN/AlGaN heterostrcture field-effect transistors for microwave communication,” IEEE Trans. Microw. Theory and Tech., vol. 47, no. 8, 1999.
[44] C. Sanabria, “Noise of AlGaN/GaN HEMT and oscillators,” Ph. D. thesis, University of California Santa Barbara., 2006.
[45] M. Higashiwaki, T. Mimura, and T. Matsui, “Enhancement- Mode AlN/GaN HFETs Using Cat-CVD SiN”, IEEE Transanctions on Electron Devices., vol.54, no.6, 2007.
[46] W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesid, “Recessed-gate Enhancement-mode GaN HEMT with High Threshold Voltage,” Electron. Lett., vol. 41, no. 7, pp. 449–450, Mar. 2005.
[47] R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, “Electron transport in AlGaN–GaN Heterostructures Grown on 6H–SiC Substrates,” Appl. Phys. Lett., vol. 72, no. 6, pp. 707-709, 1998.
[48] http://www.medicalexpo.com.cn/prod/jeol/product-80306-646189.html.
校內:2022-08-01公開