簡易檢索 / 詳目顯示

研究生: 周均霖
Chou, Chun-Lin
論文名稱: 藉由金奈米棒之電漿子效應來協助多光子製作技術
Plasmon-Assisted Multiphoton Fabrication with Gold Nanorods
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 46
中文關鍵詞: 雙光子聚合反應金奈米棒電漿子工程微結構
外文關鍵詞: two-photon polymerization, gold nanorods, plasmonic engineering, microstructure
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用雙光子吸收(two-photon absorption,TPA)衍生出的雙光子聚合(two-photon polymerization,TPP)微加工技術製作具金奈米棒(gold nanorod,AuNR)微結構,並從中討論AuNR在加工過程中所扮演的角色。以水溶性三羥甲基丙烷三丙烯酸酯(water soluble ethoxylated trimethylolpropane triacrylate,WS-TMPTA)當作反應單體,孟加拉玫瑰素(rose Bengal,RB)當作光起始劑,三乙醇胺(triethanolamine)當作共同起始劑,聚乙二醇辛基苯基醚(triton X-100)當作界面活性劑以及聚對苯乙烯磺酸鈉(poly(styrenesulfonate),PSS)包覆之AuNR來製作高分子微結構。從理論推測,當加工雷射波長和AuNR之長軸表面電漿子共振(surface plasmon resonance,SPR)匹配時,其SPR會使AuNR之局部區域電場強化,進而幫助AuNR鄰近RB之TPA增加;甚至藉著AuNR之雙光子冷光(two-photon luminescence)來幫助鄰近RB之單光子吸收增加。另外,當RB和AuNR距離夠近時,會藉由非輻射(non-radiative)的方式使能量於激發態RB與AuNR間產生耦合(coupling to plasmons)效應,讓RB的光穩定性提高外,還能增加RB之系統間跨越(intersystem crossing)以及三重激發態(excited triplet state)的量子產率。實驗中為了減少AuNR聚集沉澱問題產生,藉由靜電吸附作用於電性為正電之AuNR表面修飾上一層帶負電之PSS,以幫助其均勻溶入加工溶液中。我們調整AuNR之長寬比來改變其SPR特性,甚至調整AuNR之濃度比例,來證明具AuNR之WS-TMPTA微結構製作可經由AuNR的SPR協助,讓雷射使用功率降低約1/3,並經掃描式電子顯微鏡(scanning electron microscope)的影像鑑定,該微結構中之AuNR並無變形產生。

    In this thesis, gold nanorods (AuNRs)-doped microstructures have been successfully fabricated by using two-photon polymerization (TPP) fabrication. Furthermore, the role of AuNRs to assist the multiphoton fabrication would be discussed. Herein, water soluble trimethylolpropane triacrylate (WS-TMPTA) as a reactive monomer, rose Bengal (RB) as a photoinitiator, triethanolamine as a co-initiator, triton X-100 as a surfactant, and negatively-charged poly(styrene sulfonate) (PSS) adsorbed on the positively-charged surface of AuNRs were utilized to implement the assembly of polymer microstructure. Owing to the longitudinal surface plasmon resonance (SPR) of AuNRs by tuning their aspect ratio, we presume that the local electric field not only was enhanced by the longitudinal SPR of the AuNRs to increase the two-photon absorption of RB, but also the two-photon luminescence induced from the AuNRs could raise the one-photon absorption of RB. For the interactions of RB and AuNRs, the photostability of RB and the quantum yield of excited triplet yield of RB could be increased due to non-radiative energy transfer coupling to SPR. AuNRs coated with PSS can be assisted to disperse into the fabrication solution. The fabricated laser power can be decreased by approximately 33 % with the help of AuNRs. The zoom-in image of scanning electron microscopy shows clear and intact AuNRs inside the microstructures, which means there was no damage to the morphology of the AuNR after femtosecond laser fabrication process.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 VIII 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機及目的 5 1-4 論文架構 5 第二章 超快雷射系統與加工機制 7 2-1 超快雷射加工系統之光路設計 7 2-2 雙光子吸收光致聚合反應機制 9 第三章 金奈米棒與光聚合反應增益 14 3-1 金奈米棒之表面電漿子特性 14 3-2 金奈米棒之光聚合反應增益機制 19 第四章 材料與方法 22 4-1 金奈米棒之製備 22 4-2 加工溶液之製備 24 第五章 實驗結果與討論 28 5-1 具金奈米棒之結構製作 28 5-2 金奈米棒之波長選擇與電漿子效應的關係 32 5-3 金奈米棒之濃度選擇與電漿子效應的關係 35 第六章 結論與未來展望 37 參考文獻 39

    [1] C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737-3741 (1999).
    [2] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514-1523 (2000).
    [3] P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511-1513 (2000).
    [4] S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001).
    [5] P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249-251 (2001).
    [6] T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611-614 (2002).
    [7] Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914-919 (2008).
    [8] P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438-1441 (2000).
    [9] Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144-1148 (2009).
    [10] M. Goepper-Mayer, “Ober Elementaraktemit zwei Quantensprungen,” Annalen der Physik 9, 273-294 (1931).
    [11] W. Kaiser and C. G. B. Garrett, “Two-Photon Excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229-231 (1961).
    [12] S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411-415 (1998).
    [13] S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional Microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132-134 (1997).
    [14] J. H. Stricker and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16(22), 1780-1782 (1991).
    [15] D. A. Parthenopoulos and P. M. Rentzepis, “3-Dimensional optical storage memory,” Science 245(4920), 843-845 (1989).
    [16] P. Zijlstra1, J. W. M. Chon, and Min Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410-413 (2009).
    [17] T. A. Taton and D. J. Norris, “Defective promise in photonics,” Nature 416, 685-686 (2002).
    [18] H-B. Sun, X. Xu, S. Juodkazis, K. sun, M.Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Arbitrary-lattice photonic crystala created by multiphoton microfabrication,” Opt. Lett. 26(6), 325-327 (2001).
    [19] M. Straub and M. Gu, “Near-infrared photonic crystals with high-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824-1826 (2002).
    [20] S. Kawata and H-B. Sun, “Two-photon polymerization as a tool for making micro-devices,” Appl. Sur. Sci. 208, 153-158 (2003).
    [21] 王崇人,科學發展月刊,354,48,2002。
    [22] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A.Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21, 41-46 (2003).
    [23] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” Phys. Chem. B. 107(3), 668-677 (2003).
    [24] J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145-156 (2004).
    [25] A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906-1912 (2009).
    [26] Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708-4714 (2009).
    [27] A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724-6738 (2006).
    [28] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941-945 (2007).
    [29] W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711-2715 (2010).
    [30] W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430-4432 (2008).
    [31] W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853-4855 (2009).
    [32] Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. USA 105(6), 1798-1802 (2008).
    [33] Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields,” J. Fluoresc. 17, 345-349 (2007).
    [34] Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in as mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63(22), 2993-2995 (1993).
    [35] K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol. 17(2), 72-82 (2006).
    [36] P.-J. Jorge, P.-S. Isabel, L.-M. Luis, and M. Paul, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870-1901 (2005).
    [37] 連啟翔,具金奈米柱之三維微米元件,國立成功大學工程科學研究所碩士論文,2010。
    [38] 郭文碩,具治療性之奈米材料於細菌、癌細胞與幹細胞上之應用,國立成功大學化學研究所博士論文,2009。
    [39] S. Nah, L. Li, and J. T. Fourkas, “Field-enhanced phenomena of gold nanoparticles,” J. Phys. Chem. A 113(16), 4416-4422 (2009).
    [40] S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774-7779 (2010).
    [41] R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton absorption induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139-1142 (2005).
    [42] K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214-13220 (2005).
    [43] H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752-15756 (2005).
    [44] N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5-40 nm diameter gold nanoparticles,” Langmuir 17(22), 6782-6786 (2001).
    [45] S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75(19), 2897-2899 (1999).
    [46] N. R. Jana, L. Gearheart, and C. J. Murph, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B. 105(19), 4065-4067 (2001).
    [47] J. C. Liao, J. Roider and D. G. Jay, “Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals,” Proc. Natl. Acad. Sci. USA 91, 2659-2663 (1994).
    [48] S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B. 103(16), 3073-3077 (1999).
    [49] C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481-491 (1996).
    [50] W. S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550-27559 (2010).
    [51] C.-H. Lien, W.-S. Kuo, K.-C. Cho, C.-Y. Lin, Y.-D. Su, L. L. H. Huang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry,” Opt. Express 19(7), 6260-6268 (2011).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE