| 研究生: |
謝蓓薇 Hsieh, Bei-Wei |
|---|---|
| 論文名稱: |
以數位晶片化技術實現具單週期控制之無橋式昇壓型高功因交-直流轉換器 A Digital Approach to Realize One-Cycle Control for Bridgeless High Power Factor Boost AC-DC Converters |
| 指導教授: |
張簡樂仁
Chang-Chien, Le-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 單週期控制 、功率因數校正 、無橋式功率因數轉換器 、數位帶拒濾波器 |
| 外文關鍵詞: | One-cycle control (OCC), Power factor correction (PFC), Bridgeless PFC boost converter, Digital notch filter |
| 相關次數: | 點閱:140 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以數位晶片化技術實現具單週期控制之無橋式昇壓型高功因交‐直流轉換器。由於傳統平均電流控制法,演算法複雜且須乘法器電路及檢測輸入線電壓,難以實現於無橋式功率因數轉換器。因此,本論文採用離散時間單週期控制技術,演算法簡單且無須檢測輸入電壓,俾以應用於無橋式昇壓型功率因數交‐直流轉換器。此外,為濾除市電兩倍頻漣波對電壓迴路之影響,本文加入數位帶拒濾波器於電壓迴路,以達到系統最佳輸出電壓暫態特性。本論文首先闡述單週期控制技術之理論基礎,透過分析單週期控制應用於無橋式功率因數轉換器之工作原理,利用電路模擬軟體Matlab/Simulink 建立控制架構之模型,以模擬結果驗證其理論分析及控制策略之可行性。
最後,實作一1000W 無橋式昇壓型高功因交‐直流轉換器雛型電路,利用FPGA Altera DE2-70 數位晶片實現離散時間單週期控制技術,以進行硬體驗證。實驗結果顯示Discrete-time OCC 技術具有高功率因數及動態響應佳之特性。
A digital approach to realize one-cycle control (OCC) technique for bridgeless power-factor-correction (PFC) boost AC-DC converter is proposed in this thesis. Because the complex multiplier circuit and the input AC voltage sensing are generally required, the conventional average current-mode control is difficult to be implemented in the bridgeless PFC converter. Therefore, this thesis adopts the other alternative for continuous conduction mode bridgeless PFC converter.
The discrete-time OCC scheme does not require input AC voltage sensing for the controller reference. The control scheme can operate in peak current mode, which overcomes the complexity of bridgeless high power factor boost AC-DC converters using the conventional average current-mode control. Compared with the conventional OCC, the proposed discrete-time OCC scheme can enhance dynamic responses of the output voltage using a digital notch filter to eliminate the second harmonic component from the output voltage loop.
This thesis starts with the theoretical analysis of the one-cycle control by illustrating the working principle of the bridgeless PFC boost AC-DC converter. Following that, using the Matlab/Simulink simulation software, the simulated model of the proposed discrete-time OCC scheme is constructed and verified. The simulation results validate the theoretical analysis and the effectiveness of the control strategy.
Finally, the proposed discrete-time OCC scheme has been implemented using an FPGA Altera DE2-70 to realize a 1000 W prototype of bridgeless PFC boost AC-DC converter. Experimental results show that the proposed discrete-time OCC scheme can achieve both in high PF and fast dynamic response.
[1] "Electromagnetic compatibility (EMC) part 3-2: Limits for harmonic current emissions," IEC 61000-3-2, 2009.
[2] A. de Castro, P. Zumel, O. Garcia, "Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 334-343, 2003.
[3] E. Aridhi, M. Abbes, and A. Mami, "FPGA implementation of predictive control," in Proc. IEEE Mediterranean Electrotechnical Conference, pp. 191-196, 2012.
[4] J. Rajagopalan, F. C. Lee, and P. Nora, "A generalized technique for derivation of average current mode control laws for power factor correction without input voltage sensing," in Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 81-87, 1997.
[5] J. Luo, M. K. Jeoh, and H. C. Huang, "A new continuous conduction mode PFC IC with average current mode control," Power Electronics and Drive Systems, vol. 2, pp. 1110-1114, 2003.
[6] M. Orabi, R. Haron, and A. El-Aroudi, "Comparison between Nonlinear-Carrier Control and Average-Current-Mode Control for PFC Converters," in Proc. IEEE Power Electronics Specialists Conference, pp. 1349-1355, 2007.
[7] M. K. H. Cheung, M. H. L. Chow, and C. K. Tse, "An analog implementation to improve load transient response of PFC pre-regulators," in Proc. International Telecommunications Energy Conference, pp. 848-855, 2007.
[8] P. C. Todd, "UC3854 controlled power factor correction circuit design," U-134 Application Note, Texas Instruments, pp. 269-288.
[9] L. Yu-Tzung and T. Ying-Yu, "Digital control of boost PFC AC/DC converters with low THD and fast dynamic response," in Proc. IEEE International Power Electronics and Motion Control Conference, pp. 1672-1677, 2009.
[10] A. Prodic, C. Jingquan, R. W. Erickson, and D. Maksimovic, "Digitally controlled low-harmonic rectifier having fast dynamic responses," in Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 476-482, 2002.
[11] W. F. Zhang, Y. F. Liu, and B. Wu, "A new duty cycle control strategy for power factor correction and FPGA implementation," IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1745-1753, 2006.
[12] K. M. Smedley and S. Cuk, "One-cycle control of switching converters," in Proc. IEEE Power Electronics Specialists Conference, pp. 888-896, 1991.
[13] K. K. Sum, "Power factor and its effect on power quality," Power Conversion Proc. , 1989.
[14] "Power Factor Correction (PFC) Basic," Application Note AN-42047, Fairchild Semiconductor, 2004.
[15] J. P. M. Figueiredo, F. L. Tofoli, and B. L. A. Silva, "A review of single-phase PFC topologies based on the boost converter," in Proc. IEEE Industry Applications (INDUSCON), pp. 1-6, 2010.
[16] L. H. Dixon, "High power factor prerequlator for off-line power supplies," Unitrode power supply design seminar, Manual SEM-600, 1988.
[17] C. Silva, "Power Factor Correction with the UC3854," Application Note, Unitrode Integrated Circuit.
[18] R. Redl and B. P. Erisman, "Reducing distortion in peak-current-controlled boost power-factor correctors," in Proc. IEEE Applied Power Electronics Conference, pp. 576-583, 1994.
[19] J. J. Spangler and A. K. Behera, "A comparison between hysteretic and fixed frequency boost converters used for power factor correction," in Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 281-286, 1993.
[20] Energy Star Standard, 2008, http://www.energystar.gov/
[21] L. Jinjun, C. Weiyun, and F. C. Lee, "Evaluation of power losses in different CCM mode single-phase boost PFC converters via a simulation tool," in Proc. IEEE Industry Applications Conference, vol. 4, pp. 2455-2459, 2001.
[22] J. Turchi, "A 800W bridgeless PFC stage," Application Note AND8392/D, ON Semiconductor, 2009.
[23] L. Huber, Y. Jang, and M. M. Jovanovic, "Performance evaluation of bridgeless PFC boost rectifiers," IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[24] Y. T. Jang and M. M. Jovanovic, "A Bridgeless PFC Boost Rectifier With Optimized Magnetic Utilization," IEEE Trans. Power Electron., vol. 24, no. 1-2, pp. 85-93, 2009.
[25] B. Lu, R. Brown, and M. Soldano, "Bridgeless PFC implementation using one cycle control technique," in Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 812-817, 2005.
[26] K. Pengju, W. Shuo, and F. C. Lee, "Common Mode EMI Noise Suppression for Bridgeless PFC Converters," IEEE Trans. Power Electron., vol. 23, no. 1, pp. 291-297, 2008.
[27] A. F. de Souza and I. Barbi, "High power factor rectifier with reduced conduction and commutation losses," in Proc. Int. Telecommunication Energy Confenrence, pp. 8.1.1–8.1.5, 1999.
[28] K. M. Smedley and S. Cuk, "One-cycle control of switching converters," IEEE Trans. Power Electron., vol. 10, no. 6, pp. 625-633, 1995.
[29] K. M. Smedley and S. Cuk, "DYNAMICS OF ONE-CYCLE CONTROLLED CUK CONVERTERS," IEEE Trans. Power Electron., vol. 10, no. 6, pp. 634-639, 1995.
[30] M. Orabi, R. Haron, and M. Z. Youssef, "Stability analysis of PFC converters with one-cycle control," in Proc. Telecommunications Energy Conference, pp. 1-6, 2009.
[31] R. Brown and M. Soldano, "One cycle control IC simplifies PFC designs," in Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 1-5, 2005.
[32] T. K. Jappe and S. A. Mussa, "Discrete-time one cycle control technique applied in single-phase PFC boost converter," in Proc. IEEE International Symposium on Industrial Electronics (ISIE), pp. 1555-1560, 2011.
[33] R. Brown and M. Soldano, "PFC Converter Design with IR1150 One Cycle Control IC," Application Note AN-1077, International Rectifier, 2005.
[34] S. Buso, P. Mattavelli, L. Rossetto, and G. Spiazzi, "Simple digital control improving dynamic performance of power factor preregulators," IEEE Trans. Power Electron., vol. 13, no. 5, pp. 814-823, 1998.
[35] A. E. Aroudi, R. Haroun, A. Cid-Pastor, "Notch filtering-based stabilization of PFC AC-DC pre-regulators," in Proc. International Power Electronics and Motion Control Conference (EPE/PEMC), pp. T13-22-T13-27, 2010.
[36] A. Prodic, C. Jingquan, and R. W. Erickson, "Digitally controlled low-harmonic rectifier having fast dynamic responses," in Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 476-482, 2002.
[37] K. Hirano, S. Nishimura, and S. Mitra, "Design of digital notch filters," IEEE Trans. Communications, vol. 22, no. 7, pp. 964-970, 1974.
[38] B. Miao, R. Zane, and D. Maksimovic, "Automated Digital Controller Design for Switching Converters," in Proc. IEEE Power Electronics Specialists Conference, pp. 2729-2735, 2005.
[39] P. K. Meher, "New look-up-table optimizations for memory-based multiplication," in Proc. Integrated Circuits, ISIC '09., pp. 663-666, 2009.
[40] E. H. Ismail and R. W. Erickson, "Application of one-cycle control to three-phase high quality resonant rectifier," in Proc. IEEE Power Electronics Specialists Conference, vol. 2, pp. 1183-1190, 1995.
[41] C. Yang and K. M. Smedley, "One-cycle-controlled three-phase grid-connected inverters and their parallel operation," IEEE Trans. Ind. Appl., vol. 44, no. 2, pp. 663-671, 2008.
[42] Z. R. Lai and K. M. Smedley, "A new extension of one-cycle control and its application to switching power amplifiers," IEEE Trans. Power Electron., vol. 11, no. 1, pp. 99-105, 1996.