簡易檢索 / 詳目顯示

研究生: 許文軒
Hsu, Wen-Hsuan
論文名稱: 考量矽穿孔於不同排列與串音干擾影響範圍之三維積體電路內建診斷架構
3D-IC Built-In Diagnosis Architecture for TSVs with Different Placement and Impact Ranges of Crosstalk Faults
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 50
中文關鍵詞: 三維積體電路矽穿孔測試矽穿孔診斷串音干擾內建自我測試內建自我診斷邊界掃描元件IEEE 1500IEEE 1149.1
外文關鍵詞: 3D-IC, TSV testing, TSV fault diagnosis, Crosstalk Fault, BIST, Boundary Scan, IEEE Std. 1500, IEEE Std. 1149.1
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽穿孔在三維積體電路中扮演著相當重要的角色,其藉由提供層與層之間的垂直連線來達到降低繞線面積及增加接線頻寬的效果。因此有效率測試矽穿孔能否正常運作是在三維積體電路設計上的一個相當重要的目標。此論文主要目的在於測試及診斷堆疊後矽穿孔上面的串音干擾,並且可針對不同的串音干擾影響範圍及正方形與六邊形的矽穿孔排列布局提出一個分組演算法,使越多的矽穿孔能夠同時被測試及診斷。基於矽穿孔分組演算法的結果,我們亦實現了一個高效能、低面積消耗之矽穿孔測試及診斷架構,其架構重複利用了現存且在堆疊前常使用的IEEE 1149.1, IEEE 1500等測試標準之邊界掃描電路元件以降低測試及診斷電路之面積需求。實驗結果顯示出此論文之電路架構基於低面積消耗下亦具有低測試及診斷時間之成果。

    Through Silicon Vias (TSVs) play an important role in 3D chip integration. By providing vertical interconnection, routing area can be decreased and bandwidth can be increased. Effective and efficient testing for correct operation of TSVs is essential for 3D IC design. This work addresses the post-bond test and diagnosis of crosstalk faults among TSVs considering different impact ranges, and proposes a TSV grouping method for rectangular and hexagonal TSV placements such that as many TSVs as possible are tested simultaneously. Based on the results of the TSV grouping, we implement a high-efficiency, low-area-overhead TSV test architecture that reuses the existing boundary scan or IEEE 1500 wrapper cells typically present for pre-bond testing. Experimental results show the low test and diagnosis time as well as the low area overhead of the proposed test architecture.

    Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 Fault models in TSV post-bond testing 4 2.2 Crosstalk fault impact range 5 2.3 Rectangular and hexagonal placement topologies 7 Chapter 3 Previous Works 8 3.1 Fault Diagnosis of TSV-based Interconnects in 3-D Stacked Designs 8 3.2 A built-in self-test scheme for the post-bond test of TSVs in 3D ICs 9 3.3 Configurable Thru-Silicon-Via interconnect Built-In Self-Test and diagnosis 11 3.4 Post-Bond Interconnect Test and Diagnosis for 3-D Memory Stacked on Logic 11 3.5 An Efficient 3D-IC On-chip Test Framework to Embed TSV Testing in Memory BIST 11 Chapter 4 Proposed TSV Grouping Algorithm 13 4.1 Motivation 13 4.2 TSV modeling for grouping and valid distances 14 4.3 Extendable local solution 15 4.4 TSV grouping method 15 4.5 TSV grouping method for hexagonal placement 20 Chapter 5 BIST-Architecture for TSV Test and Diagnosis 26 5.1 Reuse of Boundary Scan Circuitry 27 5.1.1 Boundary Scan Cells (BSC) 27 5.1.2 Test Access Port Controller (TAPC) 28 5.2 Control and Receive Unit (CRU) 29 5.2.1 Test application controller (TAC) 30 5.2.2 Boundary Scan Cell Controller in Receive Unit (BSC_CTR_R) 31 5.2.3 Test Golden Generator (TGG) 32 5.3 Apply Unit 32 5.3.1 Boundary Scan Cell Controller in Apply Unit (BSC_CTR_A) 32 5.3.2 Test Pattern Generator (TPG) 33 5.4 Pattern broadcast to BSCs 34 Chapter 6 TSV Test Procedure 36 Chapter 7 Diagnostic Resolution and Fault Coverage 38 Chapter 8 Experimental Results 39 8.1 Area Overhead 39 8.2 Overhead due to pattern broadcasting 42 8.3 Reduction of diagnosis time 43 8.4 Comparison of crosstalk fault BIST approaches 44 Chapter 9 Conclusions 47 References 48

    [1] J. Q. Lu, “3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems,” Proceedings of the IEEE, vol. 97, no. 1, 2009, pp. 18-30.
    [2] H. S. Lee, K. Chakrabarty, “Test Challenges for 3D Integrated Circuits,” IEEE Design & Test of Computers, vol. 26(5), 2009, pp. 26-35
    [3] Z. Xu, A. Beece, D. Zhang, Q. Chen, K.-N. Chen, K. Rose, and J.-Q. Lu, “Crosstalk evaluation, suppression and modeling in 3D through-strata-via (TSV) network,” in Proc. IEEE Int. Conf. 3D Syst. Integr., Nov. 2010, pp. 1-8.
    [4] R. Weerasekera, M. Grange, D. Pamunuwa, H. Tehnunen, and L.-R.Zheng, “Compact modelling of through-silicon vias TSV s in three dimensional (3D) integrated circuits,” in Proc. IEEE Int’l Conf. on 3D System Integration, 2009, pp.1-8.
    [5] W. Yao, S. Pan, B. Achkir, J. Fan, and L. He, “Modeling and application of multi-port TSV networks in 3-D IC,” IEEE Trans. Computer Aided Design Integr. Circuits Syst., vol. 32, no. 4, Apr. 2013, pp. 487-496
    [6] Mercha, A. and Van der Plas, et al. “Comprehensive analysis of the impact of single and arrays of through silicon vias induced stress on high-k / metal gate CMOS performance”, in Proc. IEEE International Electron Devices Meeting (IEDM), 2010, pp. 2.2.1 -2.2.4
    [7] R. Jagtap; S. S. Kumar; R. van Leuken: “A Methodology for Early Exploration of TSV Placement Topologies in 3D Stacked ICs,” 15th Euromicro Conference on Digital System Design (DSD), September 2012, pp. 382-388
    [8] M. A. Ahmed, M. Chrzanowska-Jeske, “TSVs in Early Layout Design Exploration for 3D ICs,” in Proc. IEEE 5th Latin American Symp. On Circuits and Systems, Feb 2014, pp.25-28.
    [9] E. Marinissen, J. Verbree, M. Konijnenburg, “A Structured and Scalable Test Access Architecture for TSV-Based 3D Stacked ICs ,” in Proc. IEEE VLSI Test Symposium (VTS), 2010, pp. 269-274.
    [10] J. Rajski, J. Tyszer, “Fault Diagnosis of TSV-based Interconnects in 3-D Stacked Designs,” in Proc. IEEE International Test Conference (ITC), 2013, paper 3.2
    [11] R. Wang, K. Chakrabarty, and S. Bhawmik,“At-speed interconnect testing and test-path optimization for 2.5D ICs,” in Proc. IEEE VLSI Test Symp. (VTS), 2014, pp. 1-6
    [12] Y. J. Huang; J. F. Li; J. J. Chen; D. M. Kwai; Y. F. Chou and C. W. Wu, “A built-in self-test scheme for the post-bond test of TSVs in 3D ICs,” in Proc. IEEE VLSI Test Symposium (VTS), 2011, pp. 21-26
    [13] M. Taouil, M. Masadeh, S. Hamdioui, E.J. Marinissen, "Post-Bond Interconnect Test and Diagnosis for 3-D Memory Stacked on Logic," in IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 11, pp.1860-1872, Nov. 2015
    [14] K. J. Lee, L. C. Lee, W.H. Hsu, C. L. Hsu, “An Efficient 3D-IC On-chip Test Framework to Embed TSV Testing in Memory BIST,” in Proc. Asia and South Pacific Design Automation Conference, 2015, pp. 520 - 525
    [15] V. Pasca, L. Anghel, M. Benabdenbi, “Kth-Aggressor Fault (KAF)-based Thru-Silicon-Via Interconnect Built-In Self-Test and Diagnosis,” J. Electron. Test (JETTA), vol. 28, no. 6, Dec. 2012, pp. 817-829.
    [16] Y. J. Huang; J. F. Li; C. W. Chou; “Post-bond test techniques for TSVs with crosstalk faults in 3D ICs,” in Proc. IEEE Int’l Symp. VLSI Design, Automation, and Test (VLSI-DAT), April 2012, pp. 1-4.
    [17] M. Cuviello; S. Dey; X. Bai and Y. Zhao; "Fault modeling and simulation for crosstalk in system-on-chip interconnects," in Proc. IEEE IACM Int' l Conf on Computer-Aided Design (ICCAD), 1999, pp. 297-303.
    [18] S.R. Jan, C.Y. Yeh, C.W. Liu, C.H. Huang, B.J. Sheu: “Through Silicon Via Layout Pattern,” TSMC, US Patent App. 13/478,815, Aug. 2013
    [19] C. Grecu, P. Pande, A. Ivanov, R. Saleh, “BIST for Network-on-Chip Interconnect Infrastructures, “ in Proc. IEEE VLSI Test Symposium (VTS), 2006, pp. 30-35
    [20] M. R. Kakoee, V. Bertacco, L. Benini, "At-Speed Distributed Functional Testing to Detect Logic and Delay Faults in NoCs," in IEEE Trans. on Computers, vol.63, no.3, pp.703-717, March 2014
    [21] L. Junxiu, J. Harkin, L. Yuhua, L. Maguire, “Online fault detection for Networks-on-Chip interconnect,” in Proc. NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 14-17 July 2014, pp.31-38
    [22] W.-H. Hsu, M. A. Kochte, K.-J.Lee, “3D-IC Test Architecture for TSVs with Different Impact Ranges of Crosstalk Faults,” in Proc. IEEE Int’l Symposium on VLSI Design, Automation and Test (VLSI-DAT), 25-27 April, Hsinchu, Taiwan, 2016

    無法下載圖示 校內:2021-02-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE