| 研究生: |
吳智光 Wu, Chih-Kuang |
|---|---|
| 論文名稱: |
應用於植入式生物遙測系統之多頻天線設計 Design of Multi-Band Antennas for Implantable Biotelemetry Applications |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 共同指導教授: |
楊慶隆
Yang, Chin-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 可植入式 、平面倒F型天線天線 、四頻 、寬頻 、無線醫療頻段 、工業科學及醫療頻段 、無線醫療遙測頻段 、人體區域網路 |
| 外文關鍵詞: | Implantable, PIFA, Quad-band, Broad bandwidth, MedRadio band, ISM band, WMTS band, BAN |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一新型應用於植入式生物遙測系統之多頻天線設計,由文獻回顧中,可了解目前的植入式天線皆僅設計在單頻、雙頻或三頻操作,而且天線體積過大、頻寬與增益皆較低及操作頻段不足。在現今多樣式植入式裝置蓬勃發展的情況下,必須同時兼顧生理資訊傳輸、無線供電、微型幫浦控制及睡眠喚醒等四種功能,否則將無法完全符合未來整合生物遙測應用的需求。所以本論文研究之小型化植入式天線設計在四個頻段,分別是無線醫療頻段(MedRadio)(401-406 MHz)、無線醫療遙測頻段(WMTS)(1427-1432 MHz)及兩個工業科學醫療頻段(ISM)(433-434 MHz及2.4-2.4835 GHz),這四個頻段可涵蓋人體區域網路(BAN) 規範在3GHz以下之應用。
為了實現小型化可適用於植入式生醫通訊頻段的多頻天線設計,本論文使用之主要方法如下: (1)調整邊緣電場之電容效應,以增加天線之頻寬;(2)調整天線饋入點,以達阻抗匹配之目的;(3)以三層堆疊之平面倒F型天線天線(PIFA)技術設計天線,以達縮小體積及多頻段操作的目標。
首先實作及驗證操作在無線醫療頻段之單頻膠囊內視鏡天線於模擬的胃中之可行性。繼之,以邊緣電場之電容效應之技術來設計及驗證寬頻的無線醫療頻段植入式天線,並同時模擬可直接連接至低功耗之射頻積體電路(RFIC)而省下匹配網路的方法。更進一步,實作及驗證應用於ZigBee(900 MHz及2.4 GHz) 系統之雙頻植入式天線。經由以上驗證,最後我們提出了堆疊式架構的平面倒F型天線,利用S型狀之輻射體,再結合兩層堆疊的雙螺旋型金屬片在三層基板上之四頻平面倒F型天線天線。該天線係以短路柱來連接第一、二層金屬片,以延長該天線兩個主要模態之有效電流路徑。藉由適當地控制此兩主要模態及其高階共振模態,可分別得到寬頻操作與四頻天線操作之特性。由文獻的比較,該植入式天線是唯一可以操作在四個頻段、可減少30%的體積、提供160%的寬頻及提高140%的增益等優點,因此也將更容易與植入式生物遙測系統結合與應用。
為了印證所設計天線之輻射效率,本文規劃在一般開放式、有各種外部雜訊的實際環境中,分別以網路分析儀、射頻訊號產生器、頻譜分析儀及ZigBee評估板分別連接植入式天線及外部單極天線,可由實測接收之功率值之結果,顯示本文提出的天線設計是符合實用之需求,並適合應用於多頻段生醫遙測系統之設計。
This dissertation presents the design of a novel multi-band antenna for implantable biotelemetry applications. In the previous literatures, most of the reported implantable antennas were designed for applying in single, dual, or triple frequency bands. Beside, these published antennas had the disadvantages of large volume, narrow bandwidth, low gain, and insufficient application bands. To meet the multiple purposes of the bio-telemetry applications in the future, the implantable antennas need to provide the functions of physiology information transmission, wireless powering, micro pump controlling, and system wake-up. In this dissertation, an implantable antenna with four application bands, compact size, and good performances is proposed for employing in Body Area Networks (BAN) below 3 GHz. The four application bands are Medical Device Radiocommunications Service band (MedRadio) (401-406 MHz), Wireless Medical Telemetry Service band (WMTS) (1427-1432 MHz), and two industrial, scientific, and medical bands (ISM) (433-434 MHz and 2.4-2.4835 GHz).
For achieving the miniaturization and broadband of the implantable antenna, the methods used in this study consist of (1) tuning fringe field capacitance effects to improve bandwidth; (2) changing probe feed position to increase impedance matching; (3) using three-layer stacked planar inverted F antenna (PIFA) to accomplish the goals of miniaturized volume and multi-band operation.
First, the feasibility of a capsule endoscope antenna operates in mimicking stomach at the MedRadio band is implemented and verified. Second, the implantable antenna uses fringe field capacitance effect to design and verify its characteristics of wideband and miniaturization at the MedRadio band. Meanwhile, this proposed antenna directly matched to a low power RFIC without RF matching network is verified by simulation. Third, the proposed implantable antenna applying in ZigBee dual band (900 MHz and 2.4 GHz) system is also verified. After confirming the functions of the three proposed antennas mentioned above, the final structure of the proposed design is constructed on a three-layer substrate including a PIFA antenna with an S-shaped radiated element and two stacked twin spiral stripes. The proposed design uses a shorting pin to connect layer 1 and layer 2, which lengthens the effective current path of the two primary resonances. After properly controlled the two primary resonances and their higher modes, the broad bandwidth and quad-band are obtained. By searching the existed designs, the proposed antenna is the only one that can operate in four operation bands, reduce 30 % in volume, provide 160 % wider bandwidth, and increase 140 % in gain. According to the advantages listed above, the proposed quad-band implantable antenna can easily be combined and applied with the biotelemetry systems.
To verify the radiated efficiency of proposed antennas, this dissertation sets up the antenna in an open environment with various kinds of RF interferences for practical measurements. The received power of the proposed antenna is measured through network analyzer, RF signal generator, spectrum analyzer, and ZigBee evaluation kit. According to the measured results, the proposed antennas present suitable performances and can be applied in implantable biotelemetry systems.
[1] R. A. M. Receveur, F. W. Lindemans, and N. F. de Rooij, “Microsystem technologies for implantable applications,” J. Micromech. Microeng., vol. 17, pp. 50-80, 2007.
[2] C. C. Hung, C. L. Chung, G. S. Young, K. P. Lin and J. J. Chen, “Packaging design for implantable microstimulator,” J. Med. Biol. Eng., vol. 23, no. 3, pp. 129-136, 2003.
[3] Y. T. Li, C. H. Chang, J. J. Chen, C. C. Wang and C. K. Liang, “Development of implantable wireless biomicrosystem for measuring electrode-tissue impedance,” J. Med. Biol. Eng., vol. 25, no. 3, pp. 99-105, 2005.
[4] A. C. Paglinawan, W. Y. Chung, Y. H. Wang, S. C. Cheng, W. H. Lee, A. Albason, C. C. Chuang and S. L. Lou, “A system design with mode-switching power management for closed-loop implantable glucose biosensor,” J. Med. Biol. Eng., vol. 31. No. 5, pp. 321-329, 2011.
[5] H. Bernhard, C. Stieger, and Y. Perriard, “Micro-actuator for new implantable hearing device,” Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE, pp. 369-372, 8-12 Oct. 2006.
[6] D. Panescu, “Emerging Technologies [wireless communication systems for implantable medical devices],” Engineering in Medicine and Biology Magazine, IEEE, vol.27, no.2, pp. 96-101, March-April, 2008.
[7] W. D. Lai and C. T. M. Choi., “Incorporating the electrode-tissue Interface to cochlear implant models,” IEEE Trans. on Magnet., vol. 43, no. 4, Apr. 2007.
[8] S. K. An, S. I. Park, S. B. Jun, C. J. Lee, K. M. Byun, J. H. Sung, B. S. Wilson, S. J. Rebscher, S. H.Oh, and S. J. Kim., “Design for a simplified cochlear implant system,” IEEE Trans. on Biomed. Eng., vol. 54, no. 6, June 2007.
[9] W. Liu et al., “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE J. Solid State Circuits, vol. 35, pp. 1487-1497, Oct. 2000.
[10] D. Scribner, J. Lee, P. Skeath, R. Klein, D. Ilg, L. Wasserman, N. Fernandez, W. Freeman, J. Peele, F. K. Perkins, E. J. Friebele, W. E. Bassett, J. G. Howard, and W. Krebs., “A retinal prosthesis technology based on CMOS microelectronics and microware glass electrodes,” IEEE Trans. on Biomed. Circuits and Systems, vol. 1, no. 1, Mar. 2007.
[11] R. D. Beach, F. V. Kuster, and F. Moussy, “Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring,” IEEE Trans. Instrument. Meas., vol. 48, no. 6, Dec. 1999.
[12] F. von Stetten et al., “A one-compartment, direct glucose fuel cell for powering long-term medical implants,” Proc. 19th IEEE Int’l Conf. Micro Electro Mechanical Systems (MEMS 06), IEEE Press, pp. 934–937, 2006.
[13] M. Leonardi et al., “A soft contact lens with a MEMS strain gage embedded for intraoccular pressure monitoring,” Proc. 12th Int’l Conf. Transducers, Solid-State Sensors, Actuators, and Microsystems (Transducers 03), IEEE Press, pp. 1043–1046, 2003.
[14] D. Hodgins, A. Bertsch, N. Post, M. Frischholz, B. Volckaerts, J. Spensley, J. M. Wasikiewicz, H. Higgins, F. von Stetten, L. Kenney, “Healthy aims: developing new medical implants and diagnostic equipment,” IEEE Pervasive Computing, vol. 7, no. 1, Jan. 2008.
[15] S. Boyer, M. Sawan, M. Abdel-Gawad, S. Robin, and M. M. Elhilali, “Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs”, IEEE Trans. on Rehabilitation Eng., vol. 8, no. 4, Dec. 2000.
[16] T. Houzen, M. Takahashi, K. Saito, and K. Ito, “Implanted planar inverted F-antenna for cardiac pacemaker system,” Antenna Technology: Small Antennas and Novel Metamaterials, 2008. iWAT 2008. International Workshop on, pp. 346-349, 4-6, Mar. 2008.
[17] J. L. Gonzalez-Guillaumin, D. C. Sadowski, K. V. I. S. Kaler, M. P. Mintchev, “Ingestible capsule for impedance and pH monitoring in the esophagus,” IEEE Trans. Biomed. Eng., vol. 54, no. 12, pp. 2231-2236, Dec. 2007.
[18] W. G. Scanlon, N. E. Evans, and Z. M. McCreesh, “RF performance of a 418 MHz radio telemeter packaged for human vaginal placement,” IEEE Trans. Biomed. Eng., vol. 44, no. 5, pp. 427–430, May 1997.
[19] R. D. Beach, R. W. Conlan, M. C. Godwin, and F. Moussy, “Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors,” IEEE Trans. Instrument. Meas., vol. 54, no. 1, Feb. 2005.
[20] Medical implantable RF transceiver ZL70102 data sheet, Zarlink Semiconductor Inc., Ottawa, Canada, June 2010.
[21] H.-B. Li, J. Schwoerer, Y.-M. Yoon, J. Farserotu, W.-B. Yang, K. Sayrafian, D. Miniutti, D. Lewis, and A. Gowans, “IEEE 802.15.6 regulation subcommittee report,” 15-08-0034-08-0006-ieee-802-15-6-regulation-subcommittee-report.doc.
[22] Federal Communications Commission, ‘‘Medical Device Radiocommunications Service (MedRadio),” [Online]. Available: http://www.fcc.gov/encyclopedia/medical- device-radiocommunications-service-medradio.
[23] Federal Communications Commission, ‘‘Wireless Medical Telemetry Service (WMTS),” [Online]. Available: http://www.fcc.gov/encyclopedia/wireless-medical- telemetry-service-wmts.
[24] “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,” IEEE Standard C95.1-1999, 1999.
[25] “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,” IEEE Standard C95.1-2005, 2005.
[26] “ERC recommendation 70-03 relating to the use of short range devices (SRD),” Conf. Eur. Postal Telecommunications Administration, Tromsø, Norway, CEPT/ERC 70-03, Annex 12, 1997.
[27] C. Gabriel, S. Gabriel and E. Corthout, “The dielectric properties of biological tissues: Ι. Literature survey,” Phys. Med. Biol., 41: 2231-2249, 1996.
[28] S. Gabriel, R. W. Lau and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol., 41: 2251-2269, 1996.
[29] S. Gabriel, R. W. Lau and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., 41: 2271-2293, 1996.
[30] P. Soontornpipit, C. M. Furse, and Y. C. Chung, “Design of implantable microstrip antennas for communication with medical implants,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1944-1951, 2004.
[31] J. Johnson, “Statistical analysis of detuning effects for implantable microstrip antennas,” Ph.D. Thesis, University of Utah, 2007.
[32] J. Kim, and Y. Rahmat-Samii, “Implanted antennas inside a human body: Simulations, designs, and characterizations,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1934-1943, 2004.
[33] Y. Rahmat-Samii, and J. Kim, “Implanted antennas in medical wireless communications”, Morgan & Claypool Publishers, 2006.
[34] J. Kim, and Y. Rahmat-Samii, “Planar inverted-F antennas on implantable medical devices: Meandered type versus spiral type,” Microw. and Opt. Tech. Lett., vol. 48, no. 3, pp. 567-572, 2006.
[35] C. M. Lee, T. C. Yo, C. H. Luo, C. H. Tu, and Y. Z. Juang, “Compact broadband stacked implantable antenna for biotelemetry with medical devices,” Electron. Lett., vol. 43, no. 12, pp. 660-662, 2007.
[36] C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Dual-resonant π-shape with double L-strips PIFA for implantable biotelemetry,” Electron. Lett., vol. 44, no. 14, pp. 837-838, 2008.
[37] W. C. Liu, F. M. Yeh, and M. Ghavami, “Minituarized implantable broadband antenna for biotelemetry communication,” Microw. and Opt. Tech. Lett., vol. 50, no. 9, pp. 2407-2409, 2008.
[38] T. Yilmaz, T. Karacolak, and E. Topsakal, “Characterization and testing of a skin mimicking material for implantable antennas operating at ISM Band,” IEEE Antennas and Wirel. Propag. Lett., vol. 7, pp. 418-420, 2008.
[39] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 1001-1008, 2008.
[40] T. Karacolak, R. Cooper, and E. Topsakal, “Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2806-2812, Sept. 2009.
[41] T. Karacolak, , R. Cooper, J. Butler, S. Fisher, and E. Topsakal, “In vivo verification of implantable antennas using rats as model animals,” IEEE Antennas and Wirel. Propag. Lett., vol. 9, pp. 334-337, 2010.
[42] W. C. Liu, S. H. Chen, and C. M. Wu, “Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices,” Microw. and Opt. Tech. Lett., vol. 51, no. 3, pp. 755-757, 2009.
[43] C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry,” Microw. and Opt. Tech. Lett., vol. 51, no. 3, pp. 749-752, 2009.
[44] N. Vidal, and J. M. Lopez-Villegas, “Changes in electromagnetic field absorption in the presence of subcutaneous implanted devices: Minimizing increases in absorption,” IEEE Trans. on Electromagn. Compatibility, vol. 52, no. 3, pp. 545-555, 2010.
[45] J. Gemio, , J. Parron, and J. Soler, “Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study,” Progress In Electromagn. Research, vol. 110, pp. 437-452, 2010.
[46] K. L. Wong, “Compact and broadband microstrip Antennas”, John Wiley & Sons, Inc., 2002.
[47] C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 12, pp. 1087-1090, Dec. 1969.
[48] R. N. Simons, “Coplanar waveguide circuits, components, and systems,” Wiley Interscience, 2001.
[49] IEEE Standard 1528, “IEEE recommended practice for determining the peak spatial-average”, 2003.
[50] Italian National Research Council, Institute for Applied Physics, “Calculation of the dielectric properties of body tissues,” [Online]. Available: http://niremf.ifac.cnr.it/ tissprop/htmlclie /htmlclie.htm.
[51] J. Gemio, J. Parron, and J. Soler, “Human body effects on implantable antennas for ism bands applications: models comparison and propagation losses study,” Progress In Electromagn. Research, vol. 110, pp. 437-452, 2010.
[52] ICNIRP, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Phys., vol. 74, pp. 494-522, 1998.
[53] International Telecommunication Union, Recommendation ITU-R SA.1346, 1998.
[54] Given Imaging, M2A Given® Diagnostic System, [Online]. Available: http://www.givenimaging.com.
[55] RF SYSTEM Lab., NORIKA3, [Online]. Available: http://www.rfnorika.com.
[56] J. D. Kraus and R. J. Marhefka, “Antennas for all application, 3rd edition,” New York: McGraw-Hill, 2003.
[57] K. Fujimoto, A. Henderson, K. Hirasawa, and J. R. James, “Small antennas. letch worth,” U.K.: Research Studies Press, vol. 7, 1987.
[58] W. C. Liu, S. H. Chen and C. M. Wu, “Implantable broadband circular stacked PIFA Antenna for biotelemetry communication,” J. Electromagn. Waves Appl., vol. 22, pp. 1791-1800, 2008.
[59] T. F. Chien, C. M. Cheng, H. C. Yang, J. W. Jiang and C. H. Luo, “Development of nonsuperstrate implantable low-profile CPW-fed ceramic antennas,” IEEE Antennas and Wirel. Propag. Lett., vol. 9, pp. 599-602, 2010.
[60] C. R. Rowell and R. D. Murch, “A Capacitively Loaded PIFA for Compact Mobile Telephone Handsets,” IEEE Trans. Antennas Propag., vol. 45, no. 5, pp. 837-842, May 1997.
[61] S. B. Yeap and Z. N. Chen, “Microstrip patch antennas with enhanced gain by partial substrate removal,” IEEE Trans. Antennas Propag., vol. 58, no. 9, pp. 2811-2816, 2010.
[62] S. L. S. Yang, A. A. Kishk and K. F. Lee, “Frequency reconfigurable U-slot microstrip patch antenna,” IEEE Antennas and Wirel. Propag. Lett., vol.7, pp. 127-129, 2008.
[63] Ansoft human-body model, Ansoft. Available: http://www.ansoft.com.
[64] “Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields. Supplement C: Additional information for evaluating compliance of mobile and portable devices with FCC limits for human exposure to radiofrequency emissions,” Federal Communications Commission Office of Engineering and Technology, 2001.
[65] Schmid and Partner Engineering AG (SPEAG). Available: http://www.speag.com.
[66] S. Genovesi, S. Saponara and A. Monorchio, “Parametric design of compact dual-frequency antennas for wireless sensor networks,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2619-2627, 2011.
[67] “CC1101 datasheet,” Texas Instruments, Texas, USA. Available: http://www.ti.com/lit/ds/symlink/cc1101.pdf.
[68] P. Valdastri, A. Menciassi and P. Dario, “Transmission power requirements for novel zigbee implants in the gastrointestinal tract”, Biomedical Engineering, IEEE Trans. on, vol.55, no.6, pp. 1705-1710, June 2008.
[69] P. Bogónez-Franco, R. Bragós, A. Bayés-Genís, J. Rosell, “Implantable bioimpedance monitor using ZigBee,” Engineering in Medicine and Biology Society EMBC 2009 Annual International Conference of the IEEE, pp. 4868-4871, 3-6 Sept. 2009.
[70] P. Bogónez-Franco et al, “Performance of an implantable impedance spectroscopy monitor using ZigBee,” 2010 J. Phys.: Conf. Ser. 224 012163, 2010.
[71] P. Valdastri, S. Rossi, A. Menciassi, V. Lionetti, F. Bernini, F. A. Recchia, P. Dario, “An implantable ZigBee ready telemetric platform for in vivo monitoring of physiological parameters”, Sensors and Actuators, A: Physical, vol. 142, no. 1, pp. 369-378, 2008.
[72] J. N. Lee, J. K. Park, I. H. Choi, and J. S. Kim, "A novel dual-band patch antenna for Zigbee system", Microw. and Opt. Tech. Lett., vol. 49, no. 8, pp. 1864-1867, 2007.
[73] K. Gosalia, M. S. Humayun, and G. Lazzi, “Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis,” IEEE Trans. Antennas Propag., vol. 53, no. 8, pp. 2365-2373, Aug. 2005.
[74] P. M. Izdebski, H. Rajagopalan, and Y. Rahmat.-Samii, “Conformal ingestible capsule antenna: a novel chandelier meandered design,” IEEE Trans. Antennas Propag., vol. 57, pp. 900-909, Apr. 2009.
[75] R. Warty, M. R. Tofighi, R. U. Kawoos, and A. Rosen, “Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2366-2376, Oct. 2008.
[76] M. L. Scarpello, D. Kurup, H. Rogier, D. Vande Ginste, F. Axisa, J. Vanfleteren, W. Joseph, L. Martens, and G. Vermeeren, “Design of an implantable slot dipole conformal Flexible antenna for biomedical applications,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3556-3564, Oct. 2011.
[77] F. J. Huang, C. M. Lee, C. L. Chang, L. K. Chen, T. C. Yo, and C. H. Luo, “Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2646-2653, July 2011.
[78] F. Merli, L. Bolomey, J. Zurcher, G. Corradini, E. Meurville, and A. K. Skrivervik, ”Design, realization and measurements of a miniature antenna for implantable wireless communication systems,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3544-3555, Oct. 2011.
[79] C. A. Balanis , “Antenna theory: analysis and design”, John Wiley & Sons, Inc., 1997.
[80] T. F. Chien, “Development of CPW ceramic broadband antennas for implantable biotelemetry systems,” Ph.D. dissertation, National Cheng Kung University, Taiwan, R.O.C., 2010.
[81] S. Brewer, “The human body: a visual guide to human anatomy,” Quercus, Inc., May 2011.
校內:2016-05-15公開