| 研究生: |
李東璟 Lee, Dong-Jing |
|---|---|
| 論文名稱: |
獨立微電網之負載-頻率控制 Load-Frequency Control of Stand-Alone Microgrids |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 風力發電機 、太陽能系統 、小訊號穩定度 、燃料電池 、脈波寬度調變換流器 、壓縮空氣儲能系統 、直流-直流轉換器 、質子交換膜燃料電池 、波浪能發電機 、水電解器 、蓄電池儲能系統 、柴油引擎發電機 、固態氧化物燃料電池 、飛輪儲能系統 |
| 外文關鍵詞: | compressed air energy storage system, solid oxide fuel cells, DC-to-DC converter, proton exchange membrane fuel cell, PWM inverter, wave-energy turbine generators, flywheel energy storage system, diesel-engine generator, battery energy storage system, photovoltaic system, wind turbine generators, fuel cells, small-signal stability, aqua electrolyzer |
| 相關次數: | 點閱:150 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討一個獨立再生能源發電/儲能系統連接至獨立負載之頻率-負載控制,文中所提出的發電系統包含風力發電機、波浪能發電機、柴油發電機、燃料電池與太陽能發電系統等,儲能系統則包含蓄電池儲能系統、飛輪儲能系統與壓縮空氣儲能系統等。本論文中亦研究一個新型混合海洋能之再生能源發電/儲能系統,並經由直流高壓傳輸線連接至獨立負載,該發電系統包含離岸型風力發電系統與波浪能發電系統,可分別自海風與海洋中擷取風能與波浪能。在海洋發電系統中除了風力發電機與波浪發電機之外,亦使用柴油發電機與電解器,該電解器可由風力發電機與波浪發電系統中吸收部份能量來製造氫氣,以提供足夠的氫氣給燃料電池。而從本論文所提出獨立再生能源發電/儲能系統連接至獨立負載的模擬結果,可看出此發電系統與儲能系統之功率與頻率可達到平衡之條件。
燃料電池於獨立再生能源發電/儲能系統中扮演一個將化學能轉換成電能之重要角色,若與其他一般發電系統比較,燃料電池具有較高的運轉效率、較低的污染氣體排放、模組易於建構等優點。燃料電池除了可連接於電網外,亦可裝置於偏遠地方提供功率給獨立負載使用。在本論文中,亦分析燃料電池之穩態與動態數學模型,及使用直流-直流轉換器與直流-交流換流器連接於燃料電池輸出端,俾穩定燃料電池因不同的負載所引起之輸出電壓與電流變動問題。
The load-frequency control of an autonomous hybrid renewable-energy power generation/energy storage system (PG/ESS) that connected to isolated loads is proposed in this dissertation. The proposed renewable-energy PG subsystems include wind-turbine generators (WTGs), wave-energy turbine generators (WETGs), diesel-engine generator (DEG), fuel cells (FCs), and photovoltaic system (PV) while the energy storage subsystems consist of a battery energy storage system (BESS), flywheel energy storage system (FESS), and compressed air energy storage (CAES) system. This dissertation also studies a novel marine hybrid renewable-energy PG/ESS feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to capture wind energy and wave energy from sea wind and ocean wave, respectively. In addition to WTGs and wave-energy turbine generators (WETGs) employed in the studied marine hybrid system, DEGs and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for FCs are also included in the PG subsystems. The simulation results show that the proposed hybrid PG/ESS feeding isolated loads can be properly operated to achieve system power-frequency balance condition.
FCs have played an important role in the renewable-energy PG/ESS and they are static energy conversion devices that convert the chemical energy of fuel to electrical energy directly. Comparing with conventional PG systems, FCs have many advantages over conventional generators such as higher efficiency, lower emission of pollutant gases, flexible modular structures, etc. FCs can either be connected to a utility grid for network reinforcement or installed in a remote area to supply power for stand-alone loads. In this dissertation, mathematical models for the analysis of both dynamic and steady-state characteristics of FCs are also presented. A DC-to-DC converter and a PWM DC-to-AC inverter are connected to the output terminals of the studied FC for stabilizing output voltage-current fluctuations under different loading conditions.
[1]F. A. Farret and M. G. Simões, Integration of Alternative Sources of Energy, New York: Wiley-IEEE Press, January 2006.
[2]P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
[3]P. Wang and R. Billinton, “Reliability benefit analysis of adding WTG to a distribution system,” IEEE Trans. Energy Conversion, vol. 16, no. 2, pp. 134-139, June 2001.
[4]N. Kodama, T. Matsuzaka, and N. Inomata, “The power variation control of a wind generator by using probabilistic optimal control,” Trans. Inst. Elect. Eng. Japan, vol. 121-B, no. 1, pp. 22-30, June 2001.
[5]P. Bresesti, W. L., Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of offshore wind farms to the transmission system,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 37-43, March 2007.
[6]B. C. Ummels, M. Gibescu, E. Pelgrum, W. L. Kling, and A.J. Brand, “Impacts of wind power on thermal generation unit commitment and dispatch,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 44-51, March 2007.
[7]D. J. Hall and R. G. Colclaser, “Transient modeling and simulation of a tubular solid oxide fuel cell,” IEEE Trans. Energy Conversion, vol. 14, no. 3, pp. 749-753, September 1999.
[8]T. F. Fuller and J. Newman, “Water and thermal management in solid-polymer-electrolyte fuel cells,” Journal of Electrochemical Society, vol. 140, no. 5, pp. 1218-1225, May 1993.
[9]Y. H. Li, S. S. Choi, and S. Rajakaruna, “An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 381-387, June 2005.
[10]X. J. Liu and C. W. Chan, “Control of a solid oxide fuel cell power plant in a grid-connected system,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 405-413, June 2007.
[11]Y. H. Kim and S. S. Kim, “An electrical modeling and fuzzy logic control of a fuel cell generation system,” IEEE Trans. Energy Conversion, vol. 14, no. 2, pp. 239¬-244, June 1999.
[12]J. C. Amphlett, R. F. Mann, B. A. Peppley, P. R. Roberge, and A. Rodrigues, “A model predicting transient responses of proton exchange membrane fuel cells,” Journal of Power Sources, vol. 61, no. 1-2, pp. 183-188, July-August 1996.
[13]J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge, and A. Rodrigues, “Parametric modelling of the performance of a 5-kW proton-exchange membrane fuel cell stack,” Journal of Power Sources, vol. 49, no. 1-3, pp. 349-356, April 1994.
[14]S. Nakagawa, T. Tokoro, T. Nakano, K. Hayama, H. Ohyama, and T. Yamaguchi, “An effect of snow for electric energy generation by 40 kW PV system,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, pp. 2447-2450, May 2003.
[15]W. S. Fyfe, M. A. Powell, B. R. Hart, and B. Ratanasthien, “A global crisis: Energy in the future,” Nonrenewable Resources, pp. 187-195, November 1993.
[16]T. Shimizu, M. Hirakata, T. Kamezawa, and H. Watanabe, “Generation control circuit for photovoltaic modules,” IEEE Trans. Power Electronics, vol. 16, no. 3, pp. 293-300, March 2001.
[17]K. Kobayashi, H.Matsuo, and Y. Sekine, “An excellent operating point tracker of the solar-cell power supply system,” IEEE Trans. Industry Electronics, vol. 53, no. 2, pp. 495-499, April 2006..
[18]S. S. Yegna Narayanan, B. K. Murthy, and R. G. Sridhara, “Dynamic analysis of a grid-connected induction generator driven by a wave-energy turbine through hunting networks,” IEEE Trans. Energy Conversion, vol. 14, no. 1, pp. 115-120, March 1999.
[19]D. R. Kiran, A. Palani, S. Muthukumar, and V. Jayashankar, “Steady grid power from well energy,” IEEE Trans. Energy Conversion, vol. 12, no. 1, pp. 539-540, September 2007.
[20]P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, and Y. Liu, “Energy storage systems for advanced power applications,” IEEE Proceedings, vol. 89, no. 12, pp. 1744-1756, December 2001.
[21]R. S. Weissbach, G. G. Karady, and R.G. Farmer, “Dynamic voltage compensation on distribution feeders using flywheel energy storage,” IEEE Trans. Power Delivery, vol. 14, no. 2, pp. 465-471, April 1999.
[22]CIGRE, Modeling New Forms of Generation and Storage, TF.01.10, Fifth draft, June 2000.
[23]D. J. Swider, “Compressed air energy storage in an electricity system with significant wind power generation,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 95-102, March 2007.
[24]T. Senjyu, T. Nakaji, K. Uezato, and T. Funabashi, “A hybrid power system using alternative energy facilities in isolated island,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 406-414, June 2005.
[25]F. Valenciaga, P. F. Puleston, and P. E. Battaiotto, “Power control of a solar/wind generation system without wind measurement: A passivity/sliding mode approach,” IEEE Trans. Energy Conversion, vol. 18, no. 4, pp. 501-507, December 2003.
[26]F. Valenciaga and P. F. Puleston, “Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 398-405, June 2005.
[27]L. Gao, R. A. Dougal, and S. Liu, “Power enhancement of an actively controlled battery/ultracapacitor hybrid,” IEEE Trans. Power Electronics, vol. 20, no. 1, pp. 236-243, January 2005.
[28]K. Ro and S. Rahman, “Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant,” IEEE Trans. Energy Conversion, vol. 13, no. 3, pp. 276-281, September 1998.
[29]K. Rajashekara, “Hybrid fuel-cell strategies for clean power generation,” IEEE Trans. Industry Applications, vol. 41, no. 3, pp. 682-689, May-June 2005.
[30]E. Muljadi and H. E. McKenna, “Power quality issues in a hybrid power system,” IEEE Trans. Industry Applications, vol. 38, no. 3, pp. 803-809, May-June 2002.
[31]R. W. Wies, R. A. Johnson, A. N. Agrawal, and T. J. Chubb, “Simulink model for economic analysis and environmental impacts of a PV with diesel-battery system for remote villages,” IEEE Trans. Power Systems, vol. 20, no. 2, pp. 692-700, May 2005.
[32]A. Emadi, S. S. Williamson, and A. Khaligh, “Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems,” IEEE Trans. Power Electronics, vol. 21, no. 3, pp. 567-577, May 2006.
[33]K. Agbossou, M. Kolhe, J. Hamelin, and T. K. Bose, “Performance of a stand-alone renewable energy system based on energy storage as hydrogen,” IEEE Trans. Energy Conversion, vol. 19, no. 3, pp. 633-640, September 2004.
[34]S. Duryea, S. Islam, and W. Lawrance, “A battery management system for stand-alone photovoltaic energy systems,” IEEE Trans. Industry Applications, vol. 7, no. 3, pp. 67-72, May-June 2001.
[35]A. Bilodeau and K. Agbossou, “Control analysis of renewable energy system with hydrogen storage for residential applications,” Journal of Power Sources, vol. 162, no. 2, pp. 757-764, November 2006.
[36]P. S. Kauranen, P. D. Lund, and J. P. Vanhanen, “Control of battery backed Photovoltaic Hydrogen Production,” International Journal of Hydrogen Energy, vol. 18, no. 5, pp. 383-390, May 1993.
[37]J. M. Correa, F. A. Farret, V. A. Popov, and M. G. Simoes, “Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells,” IEEE Trans. Energy Conversion, vol. 20, no. 1, pp. 211- 218, March 2005.
[38]J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Trans. Industrial Electronics, vol. 51, no. 5, pp. 1103-1112, October 2004.
[39]C. Wang, M. H. Nehrir, and S. R. Shaw, “Dynamic models and model validation for PEM fuel cells using electrical circuits,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 442-451, June 2005.
[40]A. Forrai, H. Funato, Y. Yanagita, and Y. Kato, “Fuel-cell parameter estimation and diagnostics,” IEEE Trans. Energy Conversion, vol. 20, no. 3, pp. 668-675, September 2005.
[41]L.-Y. Chiu, B. Diong, and R. S. Gemmen, “An improved small-signal model of the dynamic behavior of PEM fuel cells,” IEEE Trans. Industry Applications, vol. 40, no. 4, pp. 970-977, July-August 2004.
[42]A. Sangswang and C. O. Nwankpa, “Noise characteristics of DC-DC boost converters: experimental validation and performance evaluation,” IEEE Trans. Industrial Electronics, vol. 51, no. 6, pp. 1297-1304, December 2004.
[43]G. K. Andersen, C. Klumpner, S. B. Kjaer, and F. Blaabjerg, “A new green power inverter for fuel cells,” in Proc. IEEE PESC, vol. 2, pp. 727-733, November 2002.
[44]D. J. Hall and R. G. Colclaser, “Transient modeling and simulation of tubular solid oxide fuel cells,” IEEE Trans. Energy Conversion, vol. 14, no. 3, pp. 749-753, September 1999.
[45]K. Sedghisigarchi and A. Feliachi, “Dynamic and transient analysis of power distribution systems with fuel cells, Part I: Fuel-cell dynamic model,” IEEE Trans. Energy Conversion, vol. 19, no. 2, pp. 423-428, June 2004.
[46]K. Sedghisigarchi and A. Feliachi, “Dynamic and transient analysis of power distribution systems with fuel cells, Part II: Control and stability enhancement,” IEEE Trans. Energy Conversion, vol. 19, no. 2, pp. 429-434, June 2004.
[47]C. J. Hatziadoniu, A. A. Lobo, F. Pourboghrat, and M. Daneshdoost, “A simplified dynamic model of grid-connected fuel-cell generators,” IEEE Trans. Power Delivery, vol. 17, no. 2, pp. 467-473, April 2002.
[48]M. Y. Sharkh, A. Rahman, M. S. Alam, A. A. Sakla, P. C. Byrne, and T. Thomas, “Analysis of active and reactive power control of a standalone PEM fuel cell power plant,” IEEE Trans. Power Systems, vol. 19, no. 4, pp. 2022-2028, November 2004.
[49]X. J. Liu and C. W. Chan, “Control of a solid oxide fuel cell power plant in a grid-connected system,” IEEE Trans. Energy Conversion, vol. 99, no. 2, pp. 405-413, March 2005.
[50]R. Teodorescu and F. Blaabjerg, “Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode,” IEEE Trans. Power Electronics, vol. 19, no. 5, pp. 1323-1332, September 2004.
[51]R. Teodorescu, F. Blaabjerg, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Industrial Electronics, vol. 53, no. 5, pp. 1398-1409, October 2006.
[52] R. Datta and V. T. Ranganathan, “Direct power control of grid-connected wound rotor induction machine without rotor position sensors,” IEEE Trans. Power Electronics, vol. 16, no. 3, pp. 390-399, May 2001.
[53] P. M. Anderson and A. Bose, “Stability simulation of wind turbine system,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, pp. 3791-3795, December 1983.